A heuristic-assisted deep reinforcement learning algorithm for flexible job shop scheduling with transport constraints

被引:0
|
作者
Xiaoting Dong [1 ]
Guangxi Wan [2 ]
Peng Zeng [3 ]
机构
[1] Shenyang Institute of Automation,State Key Laboratory of Robotics
[2] Chinese Academy of Sciences,Key Laboratory of Networked Control Systems, Shenyang Institute of Automation
[3] Chinese Academy of Sciences,undefined
[4] University of Chinese Academy of Sciences,undefined
关键词
Flexible manufacturing system; Cooperative scheduling of machines and AGVs; Markov decision process; Heuristic-assisted DQN algorithm;
D O I
10.1007/s40747-025-01828-6
中图分类号
学科分类号
摘要
Automated guided vehicles (AGVs) are widely used for transportation in flexible job shop (FJS) systems, and their transportation task scheduling has the same substantial impact on production efficiency as machine scheduling does. However, traditional FJS scheduling methods often prioritize job sequencing and machine selection while ignoring the impact of AGV transportation, resulting in suboptimal scheduling solutions and even difficulties in implementation. To address this issue, this paper formulates a cooperative scheduling model by introducing the AGV scheduling problem into the classical FJS scheduling problem, abbreviated as the FJS-AGV problem, with the objective of minimizing the makespan. With respect to the FJS-AGV problem, a heuristic-assisted deep Q-network (HA-DQN) algorithm is proposed, which leverages heuristic rules to enable the decision agent to perform multiple actions at each decision point, which includes determining the responses to the following questions: Which operation should be processed next? On which machine? By which AGV? This decision mechanism enables the agent to make more informed decisions, leading to improved performance and resource allocation in the FJS-AGV system. The practicability of the proposed FJS-AGV model and the efficiency of the HA-DQN algorithm in solving the FJS-AGV problem are verified through various international benchmarks. Specifically, when solving instances in a large benchmark, the HA-DQN algorithm yields a significant 12.63% reduction in makespan compared with that when traditional heuristics are employed.
引用
收藏
相关论文
共 50 条
  • [21] A heuristic algorithm for the distributed and flexible job-shop scheduling problem
    Mohsen Ziaee
    The Journal of Supercomputing, 2014, 67 : 69 - 83
  • [22] Flexible job shop scheduling using genetic algorithm and heuristic rules
    Kaweegitbundit, Parinya
    Eguchi, Toru
    JOURNAL OF ADVANCED MECHANICAL DESIGN SYSTEMS AND MANUFACTURING, 2016, 10 (01):
  • [23] Learning to Dispatch for Job Shop Scheduling via Deep Reinforcement Learning
    Zhang, Cong
    Song, Wen
    Cao, Zhiguang
    Zhang, Jie
    Tan, Puay Siew
    Xu, Chi
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [24] Dynamic Job Shop Scheduling via Deep Reinforcement Learning
    Liang, Xinjie
    Song, Wen
    Wei, Pengfei
    2023 IEEE 35TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2023, : 369 - 376
  • [25] Job Shop Scheduling Problem Based on Deep Reinforcement Learning
    Li, Baoshuai
    Ye, Chunming
    Computer Engineering and Applications, 2024, 57 (23) : 248 - 254
  • [26] Job shop smart manufacturing scheduling by deep reinforcement learning
    Serrano-Ruiz, Julio C.
    Mula, Josefa
    Poler, Raul
    JOURNAL OF INDUSTRIAL INFORMATION INTEGRATION, 2024, 38
  • [27] A Deep Reinforcement Learning Method Based on a Transformer Model for the Flexible Job Shop Scheduling Problem
    Xu, Shuai
    Li, Yanwu
    Li, Qiuyang
    ELECTRONICS, 2024, 13 (18)
  • [28] Flexible Job-Shop Scheduling via Graph Neural Network and Deep Reinforcement Learning
    Song, Wen
    Chen, Xinyang
    Li, Qiqiang
    Cao, Zhiguang
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (02) : 1600 - 1610
  • [29] DeepMAG: Deep reinforcement learning with multi-agent graphs for flexible job shop scheduling
    Zhang, Jia-Dong
    He, Zhixiang
    Chan, Wing -Ho
    Chow, Chi -Yin
    KNOWLEDGE-BASED SYSTEMS, 2023, 259
  • [30] Low-Carbon Flexible Job Shop Scheduling Problem Based on Deep Reinforcement Learning
    Tang, Yimin
    Shen, Lihong
    Han, Shuguang
    SUSTAINABILITY, 2024, 16 (11)