Local boundedness for minimizers of variational integrals under anisotropic nonstandard growth conditions

被引:0
|
作者
Feng, Zesheng [1 ]
Zhang, Aiping [1 ]
Gao, Hongya [1 ]
机构
[1] Hebei Univ, Coll Chem & Environm Sci, 180 Wusi Dong Rd, Lian Chi Dist 071002, Baoding, Peoples R China
关键词
local boundedness; minimizer; variational integral; anisotropic growth; convex; polyconvex; REGULARITY;
D O I
10.21136/CMJ.2024.0121-24
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with local boundedness for minimizers of vectorial integrals under anisotropic growth conditions by using De Giorgi's iterative method. We consider integral functionals with the first part of the integrand satisfying anisotropic growth conditions including a convex nondecreasing function g, and with the second part, a convex lower order term or a polyconvex lower order term. Local boundedness of minimizers is derived.
引用
收藏
页码:1165 / 1184
页数:20
相关论文
共 50 条
  • [11] Interior Regularity for Free and Constrained Local Minimizers of Variational Integrals Under General Growth and Ellipticity Conditions
    M. Bildhauer
    M. Fuchs
    Journal of Mathematical Sciences, 2004, 123 (6) : 4565 - 4576
  • [12] Regularity for minimizers of integrals with nonstandard growth
    Leonetti, Francesco
    Petricca, Pier Vincenzo
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 129 : 258 - 264
  • [13] On the local boundedness of generalized minimizers of variational problems with linear growth
    M. Bildhauer
    M. Fuchs
    J. Müller
    X. Zhong
    Annali di Matematica Pura ed Applicata (1923 -), 2018, 197 : 1117 - 1129
  • [14] On the local boundedness of generalized minimizers of variational problems with linear growth
    Bildhauer, M.
    Fuchs, M.
    Mueller, J.
    Zhong, X.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2018, 197 (04) : 1117 - 1129
  • [15] Local boundedness of minimizers of anisotropic functionals
    Cianchi, A
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2000, 17 (02): : 147 - 168
  • [16] Local boundedness of Quasi-minimizers of fully anisotropic scalar variational problems
    Tiziano Granucci
    Monia Randolfi
    manuscripta mathematica, 2019, 160 : 99 - 152
  • [17] Local boundedness of Quasi-minimizers of fully anisotropic scalar variational problems
    Granucci, Tiziano
    Randolfi, Monia
    MANUSCRIPTA MATHEMATICA, 2019, 160 (1-2) : 99 - 152
  • [18] LOCAL BOUNDEDNESS OF MINIMIZERS OF INTEGRALS OF THE CALCULUS OF VARIATIONS
    MASCOLO, E
    PAPI, G
    ANNALI DI MATEMATICA PURA ED APPLICATA, 1994, 167 : 323 - 339
  • [19] Local Boundedness for Minimizers of Some Polyconvex Integrals
    Giovanni Cupini
    Francesco Leonetti
    Elvira Mascolo
    Archive for Rational Mechanics and Analysis, 2017, 224 : 269 - 289
  • [20] Local Boundedness for Minimizers of Some Polyconvex Integrals
    Cupini, Giovanni
    Leonetti, Francesco
    Mascolo, Elvira
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 224 (01) : 269 - 289