Fractal dimensions of the graph and level sets of the Riemann-Rademacher functions

被引:0
|
作者
Yi, Shanfeng [1 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2025年 / 206卷 / 03期
基金
中国国家自然科学基金;
关键词
Riemann-Rademacher functions; Dimensions; Graph; Level set; Hausdorff measure; HAUSDORFF DIMENSION; BERNOULLI CONVOLUTIONS; FAMILY;
D O I
10.1007/s00605-025-02058-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Rs(x)=& sum;(infinity)(i=1)i(-s)R(i)(x) be the Riemann-Rademacher functions, where s>1 and {Ri(x)}i=1 infinity is the classical Rademacher function system. In this paper, we prove that both the box and Assouad dimensions of the graph of R-s(x) are equal to 2. We also study the Hausdorff dimension of the graph and level sets of R-s(x), by constructing a new sequence of Rademacher functions R-s,R-n(x), and based on the absolute continuity of their distribution functions and the L-p-norm (0<p <=+infinity) uniform boundedness of density functions.
引用
收藏
页码:747 / 769
页数:23
相关论文
共 50 条
  • [31] On the mean fractal dimensions of the Cartesian product sets
    Liu, Yu
    Selmi, Bilel
    Li, Zhiming
    CHAOS SOLITONS & FRACTALS, 2024, 180
  • [32] On the mean fractal dimensions of the Cartesian product sets
    Liu, Yu
    Selmi, Bilel
    Li, Zhiming
    Chaos, Solitons and Fractals, 2024, 180
  • [33] FRACTAL DIMENSIONS OF k-AUTOMATIC SETS
    Gorman, Alexi Block
    Schulz, Chris
    JOURNAL OF SYMBOLIC LOGIC, 2024, 89 (03) : 1128 - 1157
  • [34] On the general fractal dimensions of hyperspace of compact sets
    Cheng, Dandan
    Li, Zhiming
    Selmi, Bilel
    FUZZY SETS AND SYSTEMS, 2024, 488
  • [35] Graphs of continuous functions and fractal dimensions
    Verma, Manuj
    Priyadarshi, Amit
    CHAOS SOLITONS & FRACTALS, 2023, 172
  • [36] FRACTAL DIMENSIONS OF THE LOGARITHM OF CONTINUOUS FUNCTIONS
    Liu, Peizhi
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024, 32 (01)
  • [37] Dimensions of level sets related to tangential dimensions
    Chen, Haibo
    Wen, Zhixiong
    Xiong, Ying
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 340 (02) : 959 - 967
  • [38] Analysis of functions defined on fractal sets
    Escribano, C
    Reyes, M
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 1999, 7 (02) : 197 - 204
  • [39] Bartholdi Zeta Functions of Fractal Graph
    Sato, Iwato
    ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (01):
  • [40] A Riemann jump problem for biharmonic functions in fractal domains
    Ricardo Abreu Blaya
    Analysis and Mathematical Physics, 2021, 11