A survey of emerging applications of large language models for problems in mechanics, product design, and manufacturing

被引:1
|
作者
Mustapha, K. B. [1 ]
机构
[1] Univ Nottingham, Fac Sci & Engn, Dept Mech Mat & Mfg Engn, MalaysiaMalaysia Campus, Semenyih 43500, Malaysia
关键词
Pre-trained language models; Large language models; Generative AI; Generative pre-trained transformer; Mechanical engineering; Engineering design; Manufacturing; Mechanics; Intelligent digital twins; Intelligent maintenance; Creativity; GENERATIVE ARTIFICIAL-INTELLIGENCE; OF-THE-ART; NEURAL-NETWORKS; FUTURE; AI; SYSTEMS; REPRESENTATION; TECHNOLOGY; EVOLUTION;
D O I
10.1016/j.aei.2024.103066
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the span of three years, the application of large language models (LLMs) has accelerated across a multitude of professional sectors. Amid this development, a new collection of studies has manifested around leveraging LLMs for segments of the mechanical engineering (ME) field. Concurrently, it has become clear that general-purpose LLMs faced hurdles when deployed in this domain, partly due to their training on discipline-agnostic data. Accordingly, there is a recent uptick of derivative ME-specific LLMs being reported. As the research community shifts towards these new LLM-centric solutions for ME-related problems, the shift compels a deeper look at the diffusion of LLMs in this emerging landscape. Consequently, this review consolidates the diversity of ME-tailored LLMs use cases and identifies the supportive technical stacks associated with these implementations. Broadly, the review demonstrates how various categories of LLMs are re-shaping concrete aspects of engineering design, manufacturing and applied mechanics. At a more specific level, it uncovered emerging LLMs' role in boosting the intelligence of digital twins, enriching bidirectional communication within the human-cyber-physical infrastructure, advancing the development of intelligent process planning in manufacturing and facilitating inverse mechanics. It further spotlights the coupling of LLMs with other generative models for promoting efficient computer-aided conceptual design, prototyping, knowledge discovery and creativity. Finally, it revealed training modalities/infrastructures necessary for developing ME-specific language models, discussed LLMs' features that are incongruent with typical engineering workflows, and concluded with prescriptive approaches to mitigate impediments to the progressive adoption of LLMs as part of advanced intelligent solutions.
引用
收藏
页数:37
相关论文
共 50 条
  • [31] Privacy issues in Large Language Models: A survey
    Kibriya, Hareem
    Khan, Wazir Zada
    Siddiqa, Ayesha
    Khan, Muhammad Khurrum
    COMPUTERS & ELECTRICAL ENGINEERING, 2024, 120
  • [32] Jailbreak Attack for Large Language Models: A Survey
    Li N.
    Ding Y.
    Jiang H.
    Niu J.
    Yi P.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2024, 61 (05): : 1156 - 1181
  • [33] Large Language Models for Time Series: A Survey
    Zhang, Xiyuan
    Chowdhury, Ranak Roy
    Gupta, Rajesh K.
    Shang, Jingbo
    PROCEEDINGS OF THE THIRTY-THIRD INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2024, 2024, : 8335 - 8343
  • [34] A Survey on Model Compression for Large Language Models
    Zhu, Xunyu
    Li, Jian
    Liu, Yong
    Ma, Can
    Wang, Weiping
    TRANSACTIONS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, 2024, 12 : 1556 - 1577
  • [35] A survey of datasets in medicine for large language models
    Zhang, Deshiwei
    Xue, Xiaojuan
    Gao, Peng
    Jin, Zhijuan
    Hu, Menghan
    Wu, Yue
    Ying, Xiayang
    INTELLIGENCE & ROBOTICS, 2024, 4 (04): : 457 - 478
  • [36] A survey of table reasoning with large language models
    Zhang, Xuanliang
    Wang, Dingzirui
    Dou, Longxu
    Zhu, Qingfu
    Che, Wanxiang
    FRONTIERS OF COMPUTER SCIENCE, 2025, 19 (09)
  • [37] Bias and Fairness in Large Language Models: A Survey
    Gallegos, Isabel O.
    Rossi, Ryan A.
    Barrow, Joe
    Tanjim, Md Mehrab
    Kim, Sungchul
    Dernoncourt, Franck
    Yu, Tong
    Zhang, Ruiyi
    Ahmed, Nesreen K.
    COMPUTATIONAL LINGUISTICS, 2024, 50 (03) : 1097 - 1179
  • [38] Knowledge Editing for Large Language Models: A Survey
    Wang, Song
    Zhu, Yaochen
    Liu, Haochen
    Zheng, Zaiyi
    Chen, Chen
    Li, Jundong
    ACM COMPUTING SURVEYS, 2025, 57 (03)
  • [39] Tool learning with large language models: a survey
    Qu, Changle
    Dai, Sunhao
    Wei, Xiaochi
    Cai, Hengyi
    Wang, Shuaiqiang
    Yin, Dawei
    Xu, Jun
    Wen, Ji-rong
    FRONTIERS OF COMPUTER SCIENCE, 2025, 19 (08)
  • [40] A Survey of Robot Intelligence with Large Language Models
    Jeong, Hyeongyo
    Lee, Haechan
    Kim, Changwon
    Shin, Sungtae
    APPLIED SCIENCES-BASEL, 2024, 14 (19):