A survey of emerging applications of large language models for problems in mechanics, product design, and manufacturing

被引:1
|
作者
Mustapha, K. B. [1 ]
机构
[1] Univ Nottingham, Fac Sci & Engn, Dept Mech Mat & Mfg Engn, MalaysiaMalaysia Campus, Semenyih 43500, Malaysia
关键词
Pre-trained language models; Large language models; Generative AI; Generative pre-trained transformer; Mechanical engineering; Engineering design; Manufacturing; Mechanics; Intelligent digital twins; Intelligent maintenance; Creativity; GENERATIVE ARTIFICIAL-INTELLIGENCE; OF-THE-ART; NEURAL-NETWORKS; FUTURE; AI; SYSTEMS; REPRESENTATION; TECHNOLOGY; EVOLUTION;
D O I
10.1016/j.aei.2024.103066
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the span of three years, the application of large language models (LLMs) has accelerated across a multitude of professional sectors. Amid this development, a new collection of studies has manifested around leveraging LLMs for segments of the mechanical engineering (ME) field. Concurrently, it has become clear that general-purpose LLMs faced hurdles when deployed in this domain, partly due to their training on discipline-agnostic data. Accordingly, there is a recent uptick of derivative ME-specific LLMs being reported. As the research community shifts towards these new LLM-centric solutions for ME-related problems, the shift compels a deeper look at the diffusion of LLMs in this emerging landscape. Consequently, this review consolidates the diversity of ME-tailored LLMs use cases and identifies the supportive technical stacks associated with these implementations. Broadly, the review demonstrates how various categories of LLMs are re-shaping concrete aspects of engineering design, manufacturing and applied mechanics. At a more specific level, it uncovered emerging LLMs' role in boosting the intelligence of digital twins, enriching bidirectional communication within the human-cyber-physical infrastructure, advancing the development of intelligent process planning in manufacturing and facilitating inverse mechanics. It further spotlights the coupling of LLMs with other generative models for promoting efficient computer-aided conceptual design, prototyping, knowledge discovery and creativity. Finally, it revealed training modalities/infrastructures necessary for developing ME-specific language models, discussed LLMs' features that are incongruent with typical engineering workflows, and concluded with prescriptive approaches to mitigate impediments to the progressive adoption of LLMs as part of advanced intelligent solutions.
引用
收藏
页数:37
相关论文
共 50 条
  • [1] Special Issue: Large Language Models in Design and Manufacturing
    Zhao, Yaoyao Fiona
    Niforatos, Evangelos
    Custis, Tonya
    Lu, Yan
    Luo, Jianxi
    JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING, 2025, 25 (02)
  • [2] Large language models: a survey of their development, capabilities, and applications
    Annepaka, Yadagiri
    Pakray, Partha
    KNOWLEDGE AND INFORMATION SYSTEMS, 2025, 67 (03) : 2967 - 3022
  • [3] Emerging clinical applications of large language models in emergency medicine
    Herries, Jon
    EMERGENCY MEDICINE AUSTRALASIA, 2024, 36 (04) : 635 - 636
  • [4] Large scale foundation models for intelligent manufacturing applications: a survey
    Zhang, Haotian
    Semujju, Stuart Dereck
    Wang, Zhicheng
    Lv, Xianwei
    Xu, Kang
    Wu, Liang
    Jia, Ye
    Wu, Jing
    Liang, Wensheng
    Zhuang, Ruiyan
    Long, Zhuo
    Ma, Ruijun
    Ma, Xiaoguang
    JOURNAL OF INTELLIGENT MANUFACTURING, 2025,
  • [5] Large Language Models for Software Engineering: Survey and Open Problems
    Fan, Angela
    Gokkaya, Beliz
    Harman, Mark
    Lyubarskiy, Mitya
    Sengupta, Shubho
    Yoo, Shin
    Zhang, Jie M.
    2023 IEEE/ACM INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING: FUTURE OF SOFTWARE ENGINEERING, ICSE-FOSE, 2023, : 31 - 53
  • [6] Emerging applications of NLP and large language models in gastroenterology and hepatology: a systematic review
    Omar, Mahmud
    Nassar, Salih
    Sharif, Kassem
    Glicksberg, Benjamin S.
    Nadkarni, Girish N.
    Klang, Eyal
    FRONTIERS IN MEDICINE, 2025, 11
  • [7] Perspective: Large Language Models in Applied Mechanics
    Brodnik, Neal R.
    Carton, Samuel
    Muir, Caelin
    Ghosh, Satanu
    Downey, Doug
    Echlin, McLean P.
    Pollock, Tresa M.
    Daly, Samantha
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2023, 90 (10):
  • [8] A Survey: Collaborative Hardware and Software Design in the Era of Large Language Models
    Guo, Cong
    Cheng, Feng
    Du, Zhixu
    Kiessling, James
    Ku, Jonathan
    Li, Shiyu
    Li, Ziru
    Ma, Mingyuan
    Molom-Ochir, Tergel
    Morris, Benjamin
    Shan, Haoxuan
    Sun, Jingwei
    Wang, Yitu
    Wei, Chiyue
    Wu, Xueying
    Wu, Yuhao
    Yang, Hao Frank
    Zhang, Jingyang
    Zhang, Junyao
    Zheng, Qilin
    Zhou, Guanglei
    Li, Hai
    Chen, Yiran
    IEEE CIRCUITS AND SYSTEMS MAGAZINE, 2025, 25 (01) : 35 - 57
  • [9] Large Language Models in Finance: A Survey
    Li, Yinheng
    Wang, Shaofei
    Ding, Han
    Chen, Hang
    PROCEEDINGS OF THE 4TH ACM INTERNATIONAL CONFERENCE ON AI IN FINANCE, ICAIF 2023, 2023, : 374 - 382
  • [10] Explainability for Large Language Models: A Survey
    Zhao, Haiyan
    Chen, Hanjie
    Yang, Fan
    Liu, Ninghao
    Deng, Huiqi
    Cai, Hengyi
    Wang, Shuaiqiang
    Yin, Dawei
    Du, Mengnan
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2024, 15 (02)