Synthesis of CoTMPyP/electrochemical reduction modified multi-walled carbon nanotubes nanocomposites for the detection of purines and uric acid

被引:0
|
作者
Dong, Li [1 ,2 ]
Zhang, Dingcheng [3 ]
Wu, Xia [1 ,2 ]
Zhu, Jing [1 ,2 ]
Liu, Lin [1 ,2 ]
Liu, Chao [4 ]
Zhang, Xiaobo [1 ,2 ]
Tong, Zhiwei [1 ,2 ,5 ]
机构
[1] Jiangsu Ocean Univ, Sch Environm & Chem Engn, Lianyungang 222005, Peoples R China
[2] Jiangsu Ocean Univ, Jiangsu Key Lab Funct Control Technol Adv Mat, Lianyungang 222005, Peoples R China
[3] Nanjing Normal Univ, Sch Chem & Mat Sci, Jiangsu Key Lab New Power Batteries, Nanjing 210023, Peoples R China
[4] Yancheng Inst Technol, Yancheng 224051, Peoples R China
[5] Japan Sci & Technol Agcy JST, SORST, Kawaguchi Ctr Bldg 4-1-8, Kawaguchi, Saitama 3320012, Japan
基金
中国国家自然科学基金;
关键词
GUANINE; ADENINE;
D O I
10.1007/s10853-025-10653-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A [tetrakis(N-methylpyridyl)porphyrinato]cobalt electrochemical reduction modified multi-walled carbon nanotubes (CoTMPyP/ER-m-MWCNTs) nanocomposite was synthesized. The composites were characterized through an array of analytical techniques, including scanning electron microscopy, transmission electron microscopy, energy-dispersive spectroscopy, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy. Electrochemical analyses demonstrated the capability of the CoTMPyP/ER-m-MWCNTs nanocomposite-modified glassy carbon electrode (GCE) to simultaneously detect adenine (A), guanine (G), and uric acid (UA) over specific concentration ranges: 0.41-63.71 mu M for uric acid, and 0.25-27.14 mu M for both adenine and guanine. The determined detection limits were 0.22 mu M, 0.24 mu M, and 0.32 mu M for adenine, guanine, and uric acid, respectively. The nanocomposite demonstrates significant promise for applications in electrochemical sensing.
引用
收藏
页码:3286 / 3298
页数:13
相关论文
共 50 条
  • [31] Structural and electrochemical characterization of carbon electrode modified by multi-walled carbon nanotubes and surfactant
    Pajootan, Elmira
    Arami, Mokhtar
    ELECTROCHIMICA ACTA, 2013, 112 : 505 - 514
  • [32] Water dispersed multi-walled carbon nanotubes modified by tannin acid
    Liu, Shinian
    Wang, Cheng
    Su, Wei
    Lv, Wangyan
    Zhu, Shenglong
    Wang, Fuihui
    Fu, Qiang
    MATERIALS LETTERS, 2014, 123 : 44 - 47
  • [34] Electrochemical reduction of oxygen on multi-walled carbon nanotubes electrode in alkaline solution
    Chu, YQ
    Ma, CA
    Zhao, FM
    Huang, H
    CHINESE CHEMICAL LETTERS, 2004, 15 (07) : 805 - 807
  • [35] Synthesis of Multi-Walled Carbon Nanotubes/ZnO Nanocomposites Using Absorbent Cotton
    Jiao Qu
    Chunqiu Luo
    Qiao Cong
    Nano-Micro Letters, 2011, (02) : 115 - 120
  • [36] Synthesis and Photo luminescent Behavior of Multi-Walled Carbon Nanotubes and Samarium Nanocomposites
    Wang, Rui
    Fang, Shaoming
    Gao, Lijun
    Zhou, Liming
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2012, 9 (09) : 1264 - 1268
  • [37] Synthesis and electrocatalytic activity of multi-walled carbon nanotubes/Cu–Ag nanocomposites
    Jing Xu
    Xian-Wen Wei
    Xiao-Jie Song
    Xiao-Jing Lu
    Chang-Chun Ji
    Yong-Hong Ni
    Guang-Chao Zhao
    Journal of Materials Science, 2007, 42 : 6972 - 6976
  • [38] Synthesis of Multi-Walled Carbon Nanotubes/ZnO Nanocomposites Using Absorbent Cotton
    Qu, Jiao
    Luo, Chunqiu
    Cong, Qiao
    NANO-MICRO LETTERS, 2011, 3 (02) : 115 - 120
  • [39] Synthesis of multi-walled carbon nanotubes/β-FeOOH nanocomposites with high adsorption capacity
    Hao-Jie Song
    Lei Liu
    Xiao-Hua Jia
    Chunying Min
    Journal of Nanoparticle Research, 2012, 14
  • [40] Synthesis and physicochemical properties of calcium hydroxylapatite/multi-walled carbon nanotubes nanocomposites
    Zh. A. Ezhova
    N. A. Zakharov
    E. M. Koval’
    V. T. Kalinnikov
    Russian Journal of Inorganic Chemistry, 2012, 57 : 1051 - 1057