TranMamba: a lightweight hybrid transformer-Mamba network for single image super-resolution

被引:0
|
作者
Long Zhang [1 ]
Yi Wan [1 ]
机构
[1] Lanzhou University,School of Information Science and Engineering
关键词
Single image super-resolution; Transformer; Mamba; Hybrid transformer-mamba network;
D O I
10.1007/s11760-025-03907-0
中图分类号
学科分类号
摘要
Transformers excel in modeling long-range dependencies for computer vision, but the quadratic complexity of self-attention complicates lightweight model design. The Mamba model, with linear complexity, offers similar capabilities but underperforms compared to Transformers. Inspired by these insights, we propose TranMamba, a lightweight hybrid Transformer-Mamba network that enhances both performance and efficiency in Single Image Super-Resolution (SISR). Specifically, we reduce the computational cost associated with self-attention by alternating between Transformer and Mamba modules. To balance the extraction of both local and global information, we designed Transformer Aggregation Block (TAB) and Mamba Aggregation Block (MAB) to strengthen feature representation. Additionally, we developed a Reparameterized Spatial-Gate Feed-Forward Network (RepSGFN) to further improve the model’s feature extraction capabilities. Extensive experiments demonstrate that TranMamba achieves SOTA performance among models of comparable size.
引用
收藏
相关论文
共 50 条
  • [1] A Hybrid Network of CNN and Transformer for Lightweight Image Super-Resolution
    Fang, Jinsheng
    Lin, Hanjiang
    Chen, Xinyu
    Zeng, Kun
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 1102 - 1111
  • [2] A Residual Network with Efficient Transformer for Lightweight Image Super-Resolution
    Yan, Fengqi
    Li, Shaokun
    Zhou, Zhiguo
    Shi, Yonggang
    ELECTRONICS, 2024, 13 (01)
  • [3] An efficient lightweight network for single image super-resolution*
    Tang, Yinggan
    Zhang, Xiang
    Zhang, Xuguang
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2023, 93
  • [4] Single-image super-resolution using lightweight transformer-convolutional neural network hybrid model
    Liu, Yuanyuan
    Yue, Mengtao
    Yan, Han
    Zhu, Lu
    IET IMAGE PROCESSING, 2023, 17 (10) : 2881 - 2893
  • [5] An Amalgamated CNN-Transformer Network for Lightweight Image Super-Resolution
    Fang, Jinsheng
    Lin, Hanjiang
    Zeng, Kun
    Journal of Network Intelligence, 2024, 9 (03): : 1376 - 1387
  • [6] TCSR: Lightweight Transformer and CNN Interaction Network for Image Super-Resolution
    Cai, Danlin
    Tan, Wenwen
    Chen, Feiyang
    Lou, Xinchi
    Xiahou, Jianbin
    Zhu, Daxin
    Huang, Detian
    IEEE Access, 2024, 12 : 174782 - 174795
  • [7] Transformer for Single Image Super-Resolution
    Lu, Zhisheng
    Li, Juncheng
    Liu, Hong
    Huang, Chaoyan
    Zhang, Linlin
    Zeng, Tieyong
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 456 - 465
  • [8] A hybrid non-local enhanced network for lightweight single image super-resolution
    He, Zheng
    Yang, Haoran
    Chen, Lihui
    Jeon, Gwanggil
    Liu, Yiguang
    Yang, Xiaomin
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2024, 133 (1-2): : 1025 - 1025
  • [9] A lightweight network with bidirectional constraints for single image super-resolution
    Chen, Liangliang
    Guo, Lin
    Cheng, Deqiang
    Kou, Qiqi
    Gao, Rui
    OPTIK, 2021, 239
  • [10] Lightweight Feature Fusion Network for Single Image Super-Resolution
    Yang, Wenming
    Wang, Wei
    Zhang, Xuechen
    Sun, Shuifa
    Liao, Qingmin
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (04) : 538 - 542