Survival prediction of glioblastoma patients using machine learning and deep learning: a systematic review

被引:0
|
作者
Roya Poursaeed [1 ]
Mohsen Mohammadzadeh [1 ]
Ali Asghar Safaei [2 ]
机构
[1] Tarbiat Modares University,Department of Data Science, Faculty of Interdisciplinary Science and Technology
[2] Tarbiat Modares University,Department of Statistics, Faculty of Mathematical Sciences
[3] Tarbiat Modares University,Department of Medical Informatics, Faculty of Medical Sciences
关键词
Glioblastoma multiforme (GBM); Survival prediction; Deep learning; Machine learning; Radiomics; Systematic review;
D O I
10.1186/s12885-024-13320-4
中图分类号
学科分类号
摘要
Glioblastoma Multiforme (GBM), classified as a grade IV glioma by the World Health Organization (WHO), is a prevalent and notably aggressive form of brain tumor derived from glial cells. It stands as one of the most severe forms of primary brain cancer in humans. The median survival time of GBM patients is only 12–15 months, making it the most lethal type of brain tumor. Every year, about 200,000 people worldwide succumb to this disease. GBM is also highly heterogeneous, meaning that its characteristics and behavior vary widely among different patients. This leads to different outcomes and survival times for each individual. Predicting the survival of GBM patients accurately can have multiple benefits. It can enable optimal and personalized treatment planning based on the patient's condition and prognosis. It can also support the patients and their families to cope with the possible outcomes and make informed decisions about their care and quality of life. Furthermore, it can assist the researchers and scientists to discover the most relevant biomarkers, features, and mechanisms of the disease and to design more effective and personalized therapies. Artificial intelligence methods, such as machine learning and deep learning, have been widely applied to survival prediction in various fields, such as breast cancer, lung cancer, gastric cancer, cervical cancer, liver cancer, prostate cancer, and covid 19. This systematic review summarizes the current state-of-the-art methods for predicting glioblastoma survival using different types of input data, such as clinical features, molecular markers, imaging features, radiomics features, omics data or a combination of them. Following PRISMA guidelines, we searched databases from 2015 to 2024, reviewing 107 articles meeting our criteria. We analyzed the data sources, methods, performance metrics and outcomes of the studies. We found that random forest was the most popular method, and a combination of radiomics and clinical data was the most common input data.
引用
收藏
相关论文
共 50 条
  • [41] A systematic literature review for the prediction of anticancer drug response using various machine-learning and deep-learning techniques
    Singh, Davinder Paul
    Kaushik, Baijnath
    CHEMICAL BIOLOGY & DRUG DESIGN, 2023, 101 (01) : 175 - 194
  • [42] The Efficacy of Shape Radiomics and Deep Features for Glioblastoma Survival Prediction by Deep Learning
    Dang-Linh Trinh
    Kim, Soo-Hyung
    Yang, Hyung-Jeong
    Lee, Guee-Sang
    ELECTRONICS, 2022, 11 (07)
  • [43] PREDICTION OF OSTEOARTHRITIS PROGRESSION USING MACHINE LEARNING: A SYSTEMATIC LITERATURE REVIEW
    Castagno, Simone
    Gompels, Benjamin
    Strangmark, Estelle
    Robertson-Waters, Eve
    Birch, Mark
    van der Schaar, Mihaela
    McCaskie, Andrew
    OSTEOARTHRITIS AND CARTILAGE, 2024, 32 : S68 - S69
  • [44] Crop yield prediction using machine learning: A systematic literature review
    van Klompenburg, Thomas
    Kassahun, Ayalew
    Catal, Cagatay
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2020, 177
  • [45] Early Prediction of Sepsis in the ICU Using Machine Learning: A Systematic Review
    Moor, Michael
    Rieck, Bastian
    Horn, Max
    Jutzeler, Catherine R.
    Borgwardt, Karsten
    FRONTIERS IN MEDICINE, 2021, 8
  • [46] Deep dive into RNA: a systematic literature review on RNA structure prediction using machine learning methods
    Budnik, Michal
    Wawrzyniak, Jakub
    Grala, Lukasz
    Kadzinski, Milosz
    Szostak, Natalia
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (09)
  • [47] Breast cancer risk prediction using machine learning: a systematic review
    Hussain, Sadam
    Ali, Mansoor
    Naseem, Usman
    Nezhadmoghadam, Fahimeh
    Jatoi, Munsif Ali
    Gulliver, T. Aaron
    Tamez-Pena, Jose Gerardo
    FRONTIERS IN ONCOLOGY, 2024, 14
  • [48] Artificial intelligence, machine learning, and deep learning in rhinology: a systematic review
    Antonio Mario Bulfamante
    Francesco Ferella
    Austin Michael Miller
    Cecilia Rosso
    Carlotta Pipolo
    Emanuela Fuccillo
    Giovanni Felisati
    Alberto Maria Saibene
    European Archives of Oto-Rhino-Laryngology, 2023, 280 : 529 - 542
  • [49] Artificial intelligence, machine learning, and deep learning in rhinology: a systematic review
    Bulfamante, Antonio Mario
    Ferella, Francesco
    Miller, Austin Michael
    Rosso, Cecilia
    Pipolo, Carlotta
    Fuccillo, Emanuela
    Felisati, Giovanni
    Saibene, Alberto Maria
    EUROPEAN ARCHIVES OF OTO-RHINO-LARYNGOLOGY, 2023, 280 (02) : 529 - 542
  • [50] Systematic Review of Deep Learning and Machine Learning Models in Biofuels Research
    Ardabili, Sina
    Mosavi, Amir
    Varkonyi-Koczy, Annamaria R.
    ENGINEERING FOR SUSTAINABLE FUTURE, 2020, 101 : 19 - 32