Parameter identification of the PV systems based on an adapted version of human evolutionary optimizer

被引:0
|
作者
Qian, Jun [1 ]
Zhang, Hui [1 ]
Wang, Shun [2 ]
机构
[1] Nanjing Vocat Univ Ind Technol, Sch Mech Engn, Nanjing 210023, Jiangsu, Peoples R China
[2] Nanjing Qishun Technol Co Ltd, Nanjing 210006, Jiangsu, Peoples R China
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
Photovoltaic systems; Parameter identification; Human evolutionary optimizer; Optimization methods; Solar cells; Current-voltage curve; Mean squared error; Renewable energy; Electrical engineering;
D O I
10.1038/s41598-025-90802-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Modelling the circuit model parameters of photovoltaic (PV) cells and modules is one of the significant encounters in the field of solar energy. Lately, with the advance of the application of optimization algorithms, approximating the PV module parameters can be changed into an optimization problem. This research offers an optimization pipeline for the optimal collection of the parameters in the PV systems. The method is founded on a novel combination of a metaheuristic algorithm, termed AHEO (Adapted Human Evolutionary Optimizer) for the current goal. The key purpose of employing the AHEO in the paper is to minimalize the root mean square error (RMSE) between the forecast and the measured I-V curves of the PV system. The method has been confirmed on a commercial PV module and the results show its high accuracy with a RMSE decrease of 34.6% related to the conventional optimization methods.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Parameter Identification Based on Nonlinear Observer for Mechanical Systems
    Ordaz, Patricio
    Ramirez, Miguel
    Rodriguez, Liliam
    Cuvas, Carlos
    Romero, Hugo
    Sandre, Omar
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2021, 16 (02):
  • [32] Parameter Identification for a Class of Nonlinear Systems Based on ESN
    Yao, Xianshuang
    Wang, Zhanshan
    Zhang, Huaguang
    NEURAL INFORMATION PROCESSING (ICONIP 2017), PT IV, 2017, 10637 : 231 - 238
  • [33] Parameter Estimation of Static/Dynamic Photovoltaic Models Using a Developed Version of Eagle Strategy Gradient-Based Optimizer
    Ramadan, Abdelhady
    Kamel, Salah
    Hassan, Mohamed H.
    Tostado-Veliz, Marcos
    Eltamaly, Ali M.
    SUSTAINABILITY, 2021, 13 (23)
  • [34] CGH-GTO method for model parameter identification based on improved grey wolf optimizer, honey badger algorithm, and gorilla troops optimizer
    Jiang, Meng
    Ding, Kun
    Chen, Xiang
    Cui, Liu
    Zhang, Jingwei
    Cang, Yi
    Yang, Hang
    Gao, Ruiguang
    ENERGY, 2024, 296
  • [35] Research on the parameter identification of PV module based on fuzzy adaptive differential evolution algorithm
    Dang, Jian
    Wang, Gaoming
    Xia, Chaohao
    Jia, Rong
    Li, Peihang
    ENERGY REPORTS, 2022, 8 : 12081 - 12091
  • [36] Modeling and parameter identification of seated human body with the reference vector guided evolutionary algorithm
    Zhang, Shuguang
    Shi, Wenku
    Chen, Zhiyong
    ADVANCES IN MECHANICAL ENGINEERING, 2021, 13 (11)
  • [37] System Parameter Based Performance Optimization of Solar PV Systems with Perturbation Based MPPT Algorithms
    Angadi, Sachin
    Yaragatti, Udaykumar R.
    Suresh, Yellasiri
    Raju, A. B.
    ENERGIES, 2021, 14 (07)
  • [38] Graph based evolutionary algorithms enhance the identification of Steiner systems
    Ashlock, DA
    Bryden, KM
    Corns, S
    2005 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-3, PROCEEDINGS, 2005, : 1861 - 1866
  • [39] Robust fuzzy control and evolutionary fuzzy identification of singularly perturbed nonlinear systems with parameter uncertainty
    Yau-Zen Chang
    Zhi-Ren Tsai
    Jiing-Dong Hwang
    Jye Lee
    Electrical Engineering, 2008, 90 : 379 - 393
  • [40] Robust fuzzy control and evolutionary fuzzy identification of singularly perturbed nonlinear systems with parameter uncertainty
    Chang, Yau-Zen
    Tsai, Zhi-Ren
    Hwang, Jiing-Dong
    Lee, Jye
    ELECTRICAL ENGINEERING, 2008, 90 (05) : 379 - 393