Parameter optimization of thermal network model for aerial cameras utilizing Monte-Carlo and genetic algorithm

被引:1
|
作者
Fan, Yue [1 ]
Feng, Wei [1 ]
Ren, Zhenxing [1 ]
Liu, Bingqi [1 ]
Huang, Long [1 ]
Wang, Dazhi [2 ]
机构
[1] Chengdu Univ, Coll Mech Engn, Chengdu 610106, Sichuan, Peoples R China
[2] Chinese Acad Sci, Inst Opt & Elect, Chengdu 610209, Sichuan, Peoples R China
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
基金
中国国家自然科学基金;
关键词
Aerial camera; Thermal network model; Parameter optimization; Monte-Carlo algorithm; Genetic algorithm; DESIGN; SYSTEM;
D O I
10.1038/s41598-024-73379-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
It is crucial to precisely calculate temperature utilizing thermal models, which require the determination of thermal parameters that optimally align model outcomes with experimental data. In many instances, the refinement of these models is undertaken within space instruments. This paper introduces an optimization methodology for thermal network models, with the objective of enhancing the accuracy of temperature predictions for aerial cameras. The investigation of internal convective heat transfer coefficients for both cylindrical and planar structures provides an estimation of convective thermal parameters. Based on the identification of thermally sensitive parameters and the reliability evaluation of transient temperature data through the Monte-Carlo simulation, the genetic algorithm is employed to search for global optimal parameter values that minimize the root mean square error (RMSE) between calculated and measured node temperatures. As a result, the optimized model shows significantly improved accuracy in temperature prediction, attaining an RMSE of 1.07 degrees C and reducing the maximum relative error between predicted and experimental results from 33.8 to 3.1%. Furthermore, the flight simulation and thermal control experiments validate the robustness of the optimized model, demonstrating that discrepancies between the observed and predicted temperatures are within 2 degrees C after re-correcting the external convection heat transfer coefficient value.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Parameter optimization for a PEMFC model with a hybrid genetic algorithm
    Mo, Zhi-Jun
    Zhu, Xin-Jian
    Wei, Ling-Yun
    Cao, Guang-Yi
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2006, 30 (08) : 585 - 597
  • [42] Path planning based on Genetic Algorithms and the Monte-Carlo method to avoid aerial vehicle collisions under uncertainties
    Cobano, J. A.
    Conde, R.
    Alejo, D.
    Ollero, A.
    2011 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2011,
  • [43] A NEW APPROACH FOR MAINTENANCE SCHEDULING OF POWER SYSTEMS, USING A GENETIC ALGORITHM AND MONTE-CARLO SIMULATION
    Manbachi, Moein
    Mahdloo, Faezeh
    Haghifam, Mahmood-Reza
    Ataei, Abtin
    Yoo, ChangKyoo
    EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY, 2010, (04): : 82 - 90
  • [44] Collaborative Cognitive Wireless Network Optimization Model and Network Parameter Optimization Algorithm
    Zhang, Tao
    JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, 2023, 2023
  • [45] Parameter-importance based Monte-Carlo Technique for Variation-aware Analog Yield Optimization
    Kondamadugula, Sita
    Naidu, Srinath R.
    2016 INTERNATIONAL GREAT LAKES SYMPOSIUM ON VLSI (GLSVLSI), 2016, : 51 - 56
  • [46] Monte-carlo based uncertainty analysis framework using a multi-modal genetic algorithm
    Werner, M
    Khu, ST
    DEVELOPMENT, PLANNING AND MANAGEMENT OF SURFACE AND GROUND WATER RESOURCES, THEME A, PROCEEDINGS, 2001, : 425 - 431
  • [47] A new approach for maintenance scheduling of power systems, using a genetic algorithm and monte-carlo simulation
    Manbachi, Moein
    Mahdloo, Faezeh
    Haghifam, Mahmood-Reza
    Ataei, Abtin
    Yoo, Chang Kyoo
    Eksploatacja i Niezawodnosc, 2010, 48 (04) : 82 - 90
  • [48] GENETIC ALGORITHMS - AN EVOLUTION FROM MONTE-CARLO METHODS FOR STRONGLY NONLINEAR GEOPHYSICAL OPTIMIZATION PROBLEMS
    GALLAGHER, K
    SAMBRIDGE, M
    DRIJKONINGEN, G
    GEOPHYSICAL RESEARCH LETTERS, 1991, 18 (12) : 2177 - 2180
  • [49] Combining a neural network with a genetic algorithm for process parameter optimization
    Cook, DF
    Ragsdale, CT
    Major, RL
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2000, 13 (04) : 391 - 396
  • [50] Parameter design optimization via neural network and genetic algorithm
    Su, Chao-Ton, 2000, University of Cincinnati, Cincinnati, OH, United States (07):