The three-point form factor of Tr φ3 to six loops

被引:1
|
作者
Basso, Benjamin [1 ,3 ]
Dixon, Lance J. [2 ,3 ]
Tumanov, Alexander G. [1 ,4 ]
机构
[1] Univ Paris Diderot, Univ PSL, Sorbonne Univ,Sorbonne Paris Cite, Lab Phys,Ecole Normale Super,CNRS, F-75005 Paris, France
[2] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94309 USA
[3] SUNY Stony Brook, Simons Ctr Geometry & Phys, Stony Brook, NY 11794 USA
[4] Ecole Normale Super, Inst Philippe Meyer, F-75005 Paris, France
来源
关键词
Scattering Amplitudes; Supersymmetric Gauge Theory; 2-LOOP MASTER INTEGRALS; AMPLITUDE; DUALITY; POLYLOGARITHMS; PENTAGONS; JETS;
D O I
10.1007/JHEP02(2025)034
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study the three-point form factor of the length-three half-BPS operator (Tr phi 3) in planar N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 Super-Yang-Mills theory, using analyticity and integrability methods. We find that the functions describing the form factor in perturbation theory live in the same restrictive space of multiple polylogarithms as the one describing the form factor of the stress-tensor operator (Tr phi 2). Furthermore, we find that the leading-order data in the collinear limit provided by the form factor operator product expansion (FFOPE) is enough to fix the form factor uniquely, at least through six loops. We perform various tests of our results using the subleading FFOPE corrections. We also analyze the form factor in the Regge limit where two Mandelstam invariants are large; we obtain a compact representation for the form factor in this limit which is valid to all orders in the coupling.
引用
收藏
页数:49
相关论文
共 50 条
  • [31] The three-point function of planar quadrangulations
    Bouttier, J.
    Guitter, E.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
  • [32] Timelike Liouville three-point function
    Giribet, Gaston
    PHYSICAL REVIEW D, 2012, 85 (08):
  • [33] The gear unit with three-point movement
    Stein, K
    ZEITSCHRIFT DES VEREINES DEUTSCHER INGENIEURE, 1928, 72 : 459 - 463
  • [34] A three-point characterization of central symmetry
    Chakerian, GD
    Klamkin, MS
    AMERICAN MATHEMATICAL MONTHLY, 2004, 111 (10): : 903 - 905
  • [35] Three-Point Charges on a Flexible Arc
    Giorgadze G.
    Khimshiashvili G.
    Journal of Mathematical Sciences, 2023, 275 (6) : 712 - 717
  • [36] Fixing the quantum three-point function
    Yunfeng Jiang
    Ivan Kostov
    Florian Loebbert
    Didina Serban
    Journal of High Energy Physics, 2014
  • [37] Hexagonal lattices with three-point interactions
    Le Dret, Herve
    Raoult, Annie
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2017, 108 (05): : 613 - 632
  • [38] The cosmic shear three-point functions
    Benabed, K.
    Scoccimarro, R.
    ASTRONOMY & ASTROPHYSICS, 2006, 456 (02) : 421 - U16
  • [39] Three-point correlators for giant magnons
    Rafael Hernández
    Journal of High Energy Physics, 2011
  • [40] Three-point plan for secure pensions
    不详
    PROFESSIONAL ENGINEERING, 2005, 18 (16) : 11 - 11