Long-wave infrared upconversion detection based on a ZnGeP2 crystal

被引:0
|
作者
Liu, Pengxiang [1 ]
Guo, Xu [1 ,2 ]
Guo, Liyuan [3 ]
Qi, Feng [1 ]
Lei, Zuotao [4 ]
Fu, Qiaoqiao [1 ,2 ,5 ,6 ]
Li, Wei [1 ,2 ,5 ,6 ]
Li, Weifan [1 ,5 ,6 ]
机构
[1] Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang,110169, China
[2] University of Chinese Academy of Sciences, Beijing,100049, China
[3] Center for Optics Research and Engineering, Key Laboratory of Laser & Infrared System, Ministry of Education, Shandong University, Qingdao,266237, China
[4] School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin,150001, China
[5] Key Laboratory of Liaoning Province in Terahertz Imaging and Sensing, Shenyang,110169, China
[6] Key Laboratory of Opto-electronic Information Processing, Chinese Academy of Sciences, Shenyang,110169, China
基金
中国国家自然科学基金;
关键词
Gallium compounds - Germanium compounds - Nonlinear optics - Thermography (imaging);
D O I
10.1364/OL.555362
中图分类号
学科分类号
摘要
Longwave infrared (LWIR) detection is achieved through nonlinear upconversion with a ZnGeP2 crystal. The target LWIR light interacts efficiently with a 1.06 µm probe laser, converting into a near-infrared signal. This detection configuration offers the following advantages: a broad response wavelength band of 9.69–12.38 µm and a high optical-to-optical responsivity of 150–200%, attributed to the enhanced properties of a custom-fabricated ZnGeP2 crystal. Theoretical interpretations of these experimental outcomes are based on coupled-wave equations. At room temperature, the system achieves a minimal detectable energy in the sub-fJ (ns pulses) range. It has the potential for wide-field imaging when designed as noncritical phase matching, owing to its large acceptance angle. © 2025 Optica Publishing Group. All rights, including for text and data mining (TDM), Artificial Intelligence (AI) training, and similar technologies, are reserved.
引用
收藏
页码:1861 / 1864
相关论文
共 50 条
  • [21] Research of thermodynamic properties of mid-infrared single crystal ZnGeP2
    Liu, Mengdi
    Zhao, Beijun
    Chen, Baojun
    He, Zhiyu
    Zhu, Shifu
    Liu, Hui
    Sun, Hui
    Sha, Mingyu
    Feng, Bo
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2018, 79 : 161 - 164
  • [22] Growth and annealing characterization of ZnGeP2 crystal
    Yang, Yongjuan
    Zhang, Yujun
    Gu, Qingtian
    Zhang, Huaijin
    Tao, Xutang
    JOURNAL OF CRYSTAL GROWTH, 2011, 318 (01) : 721 - 724
  • [23] Photorefractive effect in ZnGeP2 single crystal
    P. M. Karavaev
    V. M. Abusev
    G. A. Medvedkin
    Technical Physics Letters, 2006, 32 : 498 - 500
  • [24] Photorefractive effect in ZnGeP2 single crystal
    Karavaev, P. M.
    Abusev, V. M.
    Medvedkin, G. A.
    TECHNICAL PHYSICS LETTERS, 2006, 32 (06) : 498 - 500
  • [25] PICOSECOND PARAMETRIC SUPERLUMINESCENCE IN THE ZNGEP2 CRYSTAL
    VODOPYANOV, KL
    VOEVODIN, VG
    GRIBENYUKOV, AI
    KULEVSKII, LA
    IZVESTIYA AKADEMII NAUK SSSR SERIYA FIZICHESKAYA, 1985, 49 (03): : 569 - 572
  • [26] DETECTION OF CRYSTAL PHASE IN POLYETHYLENETEREPHTHALATE FILMS BY METHOD OF LONG-WAVE INFRARED SPECTROSCOPY
    AFANASEV.NI
    VITSNUDE.MB
    ZHIZHIN, GN
    DOKLADY AKADEMII NAUK SSSR, 1973, 213 (03): : 611 - 613
  • [27] TRANSIENT THERMAL LENS IN A ZNGEP2 CRYSTAL
    TUCKER, JE
    MARQUARDT, CL
    BOWMAN, SR
    FELDMAN, BJ
    APPLIED OPTICS, 1995, 34 (15): : 2678 - 2682
  • [28] Mid-infrared, single crystal, linear cavity optical parametric oscillators based on ZnGeP2
    Koen, Wayne
    Jacobs, Cobus
    Morris, Daniel
    Wu, Lorinda
    Strauss, Hencharl J.
    NONLINEAR FREQUENCY GENERATION AND CONVERSION: MATERIALS AND DEVICES XVIII, 2019, 10902
  • [29] High power and efficient long wave IR ZnGeP2 parametric oscillator
    Lippert, Espen
    Rustad, Gunnar
    Arisholm, Gunnar
    Stenersen, Knut
    OPTICS EXPRESS, 2008, 16 (18) : 13878 - 13884
  • [30] The research of THz optical parametric oscillator based on ZnGeP2 crystal
    Wang Bingxia
    Hao Wei
    INTERNATIONAL SYMPOSIUM ON PHOTOELECTRONIC DETECTION AND IMAGING 2011: TERAHERTZ WAVE TECHNOLOGIES AND APPLICATIONS, 2011, 8195