Covering spaces of symplectic toric orbifolds

被引:0
|
作者
Razny, Pawel [1 ]
Sheshko, Nikolay [2 ]
机构
[1] Jagiellonian Univ Cracow, Inst Math, Fac Math & Comp Sci, Krakow, Poland
[2] Univ Illinois, Dept Math, Champaign, IL USA
关键词
Symplectic topology; Smooth orbifolds; Orbifold covering spaces; Symplectic toric orbifolds;
D O I
10.1007/s10455-025-09984-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we study covering spaces of symplectic toric orbifolds and symplectic toric orbifold bundles. In particular, we show that all symplectic toric orbifold coverings are quotients of some symplectic toric orbifold by a finite subgroup of a torus. We then give a general description of the labeled polytope of a toric orbifold bundle in terms of the polytopes of the fiber and the base. Finally, we apply our findings to study the number of toric structures on products of labeled projective spaces.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] The topology of toric symplectic manifolds
    McDuff, Dusa
    GEOMETRY & TOPOLOGY, 2011, 15 (01) : 145 - 190
  • [42] SYMMETRY OF A SYMPLECTIC TORIC MANIFOLD
    Masuda, Mikiya
    JOURNAL OF SYMPLECTIC GEOMETRY, 2010, 8 (04) : 359 - 380
  • [43] Toric symplectic ball packing
    Pelayo, Alvaro
    TOPOLOGY AND ITS APPLICATIONS, 2006, 153 (18) : 3633 - 3644
  • [44] Nonrational symplectic toric cuts
    Battaglia, Fiammetta
    Prato, Elisa
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2018, 29 (10)
  • [45] On complex and symplectic toric stacks
    Hochenegger, Andreas
    Witt, Frederik
    CONTRIBUTIONS TO ALGEBRAIC GEOMETRY: IMPANGA LECTURE NOTES, 2012, : 305 - +
  • [46] Every Symplectic Toric Orbifold is a Centered Reduction of a Cartesian Product of Weighted Projective Spaces
    Marinkovic, Aleksandra
    Pabiniak, Milena
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (23) : 12432 - 12458
  • [47] SYMPLECTIC POTENTIAL, COMPLEX COORDINATES AND HIDDEN SYMMETRIES ON TORIC SASAKI-EINSTEIN SPACES
    Slesar, Vladimir
    Visinescu, Mihai
    Vilcu, Gabriel Eduard
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2015, 16 (04): : 505 - 512
  • [48] Equivariant inverse spectral theory and toric orbifolds
    Dryden, Emily B.
    Guillemin, Victor
    Sena-Dias, Rosa
    ADVANCES IN MATHEMATICS, 2012, 231 (3-4) : 1271 - 1290
  • [49] The Poincaré problem for foliations on compact toric orbifolds
    Miguel Rodríguez Peña
    Geometriae Dedicata, 2021, 215 : 333 - 353
  • [50] Equivariant K-theory of toric orbifolds
    Sarkar, Soumen
    Uma, Vikraman
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2021, 73 (03) : 735 - 752