Performance evaluation of fly ash–copper slag-based geopolymer bricks

被引:0
|
作者
Ibukunoluwa O. Erunkulu [1 ]
Goitseone Malumbela [1 ]
Oluseyi P. Oladijo [2 ]
机构
[1] Botswana International University of Science and Technology,Department of Civil and Environmental Engineering
[2] Botswana International University of Science and Technology,Department of Chemical, Materials, and Metallurgical Engineering
关键词
Fly ash; Copper slag; Bricks; Compressive strength; Water absorption; Sustainable construction material; 粉煤灰; 铜渣; 砖; 抗压强度; 吸水率; 可持续建筑材料;
D O I
10.1007/s44242-024-00045-7
中图分类号
学科分类号
摘要
This study investigates the production and evaluation of geopolymer bricks made from a blend of fly ash, copper slag, soda ash activator, and sand as fillers. Locally abundant industrial and mining waste materials were selected as the primary components. The bricks were synthesized using two binders: 60% fly ash with 40% copper slag, or 70% fly ash with 30% copper slag. Both were milled with the activator at a 0.2 soda ash-to-precursor ratio. Fine sand was added to the mixes at 1:2 and 1:3 binders-to-sand ratios. The bricks’ physical, mechanical, and durability properties were examined through compressive strength, modulus of rupture, density, water absorption, drying shrinkage, and efflorescence test, and their performance was compared to established industry standards. The experimental findings indicate that bricks made with 60% fly ash, 40% copper slag, and a 1:2 binder-to-sand ratio exhibited optimal compressive strength (9.64 MPa) and water absorption (7.5%) at 28 days of curing age. Conversely, there was only a marginal increase of up to 4.7% in the strength of the formulation with 70% fly ash and 30% copper slag, attaining a compressive strength of 4.9 MPa between the curing ages. Furthermore, the results indicated a positive correlation between the density and compressive strength of the geopolymer bricks at similar curing ages. The bricks’ density showed minimal variation with curing age and the highest modulus of rupture value observed was 2.5 MPa. The optimal bricks also exhibited relatively low linear shrinkage, good resistance to efflorescence, and met the relevant industry standards.
引用
收藏
相关论文
共 50 条
  • [21] Effect of crumb rubber and polyethylene fiber on the strength and toughness of fly ash/slag-based geopolymer concrete
    Adebayo, Ibrahim Wahab
    Long, Guangcheng
    Tang, Zhuo
    Ghone, Mohammad Osman
    Zaland, Saifurahman
    Garba, Mustapha Jamaa
    Yang, Kai
    Akhunzada, Khalid
    Oluwasina, Usman Abdulfatai
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 455
  • [22] Mechanical and microstructural evolutions of fly ash/slag-based geopolymer at high temperatures: Effect of curing conditions
    Saludung, Apriany
    Azeyanagi, Takumu
    Ogawa, Yuko
    Kawai, Kenji
    CERAMICS INTERNATIONAL, 2023, 49 (02) : 2091 - 2101
  • [23] Mechanical properties and microstructure of fly ash and slag-based geopolymer prepared by silica fume-based activator
    Lin, Minguo
    Chen, Geng
    Chen, Yonghui
    Han, Dandan
    Su, Ruobin
    Wu, Jing
    JOURNAL OF CLEANER PRODUCTION, 2025, 498
  • [24] Comparison of thermal performance between fly ash geopolymer and fly ash-ladle furnace slag geopolymer
    Hui-Teng, Ng
    Cheng-Yong, Heah
    Yun-Ming, Liew
    Abdullah, Mohd Mustafa Al Bakri
    Pakawanit, Phakkhananan
    Bayuaji, Ridho
    Yong-Sing, Ng
    Zulkifly, Khairunnisa Binti
    Wan-En, Ooi
    Yong-Jie, Hang
    Shee-Ween, Ong
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2022, 585
  • [25] Fly Ash Based Geopolymer Bricks: A Sustainable Construction Material
    Balakrishnan, Niveditha
    Usha, S.
    Thomas, Ponny K.
    PROCEEDINGS OF STRUCTURAL ENGINEERING AND CONSTRUCTION MANAGEMENT, SECON'19, 2020, 46 : 279 - 290
  • [26] Processing and Characterization of Fly Ash-Based Geopolymer Bricks
    Ibrahim, Wan Mastura Wan
    Abdullah, Mohd Mustafa Al Bakri
    Sandu, Andrei Victor
    Hussin, Kamarudin
    Sandu, Ioan Gabriel
    Ismail, Khairul Nizar
    Radir, Aeslina Abdul
    Binhussain, Mohammed
    REVISTA DE CHIMIE, 2014, 65 (11): : 1340 - 1345
  • [27] Production, Properties and Performance of Slag-Based, Geopolymer Foams
    Tsaousi, Georgia-Maria
    Panias, Dimitrios
    MINERALS, 2021, 11 (07)
  • [28] STUDY ON SHRINKAGE PERFORMANCE OF SLAG-BASED GEOPOLYMER CONCRETE
    Wang, Q.
    Tu, X.
    Li, L.
    Ding, Z. Y.
    Sui, Z. T.
    FIRST INTERNATIONAL CONFERENCE ON ADVANCES IN CHEMICALLY-ACTIVATED MATERIALS, CAM 2010, 2010, 72 : 198 - 205
  • [29] Research on the Carbonation Resistance and Carbonation Depth Prediction Model of Fly Ash- and Slag-Based Geopolymer Concrete
    Zhao, Chenggong
    Li, Jian
    Zhu, Zhenyu
    Guo, Qiuyu
    Wu, Xinrui
    Wang, Zhiyuan
    Zhao, Renda
    KSCE JOURNAL OF CIVIL ENGINEERING, 2024, 28 (07) : 2802 - 2817
  • [30] Effect of mix proportion parameters on chloride erosion resistance of fly ash/slag-based engineered geopolymer composites
    Feng, Hu
    Xin, Xin
    Guo, Aofei
    Yu, Zhenyun
    Shao, Qi
    Sheikh, M. Neaz
    Sun, Zhihui
    JOURNAL OF CLEANER PRODUCTION, 2024, 438