Spatio-temporal envolutional graph neural network for traffic flow prediction in UAV-based urban traffic monitoring system

被引:0
|
作者
Ma, Wenming [1 ]
Chu, Zihao [1 ]
Chen, Hao [1 ]
Li, Mingqi [1 ]
机构
[1] Yantai Univ, Sch Comp & Control Engn, Yantai 264005, Peoples R China
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Unmanned aerial vehicle; Traffic monitoring system; Graph neural network; Traffic flow prediction; PERFORMANCE-MEASUREMENT SYSTEM;
D O I
10.1038/s41598-024-78335-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
With the advancement of modern UAV technology, UAVs have become integral to creating traffic management monitoring systems. Additionally, UAV-based traffic monitoring systems can predict traffic flow by integrating machine learning methods. Specifically, traffic flow data contains both spatial and temporal information, which can be effectively processed by graph neural networks (GNNs). However, GNNs often face the challenge of oversmoothing, which hinders their ability to capture complex structures in the data. The Spatio-Temporal Graph Ordinary Differential Equations (STGODE) model addresses this issue by introducing Neural Ordinary Differential Equations (NODEs) to construct deeper GNNs. Despite this, STGODE relies on initially predefined semantic neighborhood matrices, which do not adapt well to the dynamic nature of traffic information. To overcome this limitation, we propose an evolutionary graph neural network for traffic prediction, capable of continuously updating the semantic adjacency matrix throughout the training process. This dynamic evolution of the semantic adjacency matrix allows it to adapt to the features and semantic relations of the current data, enhancing its ability to capture the complexity and variability of traffic patterns. We validate our approach through experiments on several real-world datasets, demonstrating that our method outperforms state-of-the-art benchmarks.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Deep spatio-temporal neural network based on interactive attention for traffic flow prediction
    Zeng, Hui
    Peng, Zhiying
    Huang, XiaoHui
    Yang, Yixue
    Hu, Rong
    APPLIED INTELLIGENCE, 2022, 52 (09) : 10285 - 10296
  • [22] Adaptive Spatio-temporal Graph Neural Network for traffic forecasting
    Ta, Xuxiang
    Liu, Zihan
    Hu, Xiao
    Yu, Le
    Sun, Leilei
    Du, Bowen
    KNOWLEDGE-BASED SYSTEMS, 2022, 242
  • [23] Integrated Spatio-Temporal Graph Neural Network for Traffic Forecasting
    Singh, Vandana
    Sahana, Sudip Kumar
    Bhattacharjee, Vandana
    APPLIED SCIENCES-BASEL, 2024, 14 (24):
  • [24] Dynamic Spatio-temporal traffic flow prediction based on multi fusion graph attention network
    Cheng, Manru
    Jiang, Guo-Ping
    Song, Yurong
    Yang, Chen
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 7285 - 7291
  • [25] Traffic Prediction Based on Multi-graph Spatio-Temporal Convolutional Network
    Yao, Xiaomin
    Zhang, Zhenguo
    Cui, Rongyi
    Zhao, Yahui
    WEB INFORMATION SYSTEMS AND APPLICATIONS (WISA 2021), 2021, 12999 : 144 - 155
  • [26] Dynamic Spatio-Temporal Graph-Based CNNs for Traffic Flow Prediction
    Chen, Ken
    Chen, Fei
    Lai, Baisheng
    Jin, Zhongming
    Liu, Yong
    Li, Kai
    Wei, Long
    Wang, Pengfei
    Tang, Yandong
    Huang, Jianqiang
    Hua, Xian-Sheng
    IEEE ACCESS, 2020, 8 : 185136 - 185145
  • [27] Traffic Flow Prediction Model Based on Spatio-Temporal Dilated Graph Convolution
    Sun, Xiufang
    Li, Jianbo
    Lv, Zhiqiang
    Dong, Chuanhao
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2020, 14 (09): : 3598 - 3614
  • [28] Network traffic prediction based on feature fusion spatio-temporal graph convolutional network
    Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing
    100876, China
    不详
    100876, China
    Proc SPIE Int Soc Opt Eng,
  • [29] Spatio-Temporal Wireless Traffic Prediction With Recurrent Neural Network
    Qiu, Chen
    Zhang, Yanyan
    Feng, Zhiyong
    Zhang, Ping
    Cui, Shuguang
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2018, 7 (04) : 554 - 557
  • [30] STANN: A Spatio-Temporal Attentive Neural Network for Traffic Prediction
    He, Zhixiang
    Chow, Chi-Yin
    Zhang, Jia-Dong
    IEEE ACCESS, 2019, 7 : 4795 - 4806