Stochastic security as a performance metric for quantum-enhanced generative AI

被引:0
|
作者
Crum, Noah A. [1 ]
Sunny, Leanto [1 ]
Ronagh, Pooya [2 ,3 ,4 ,5 ]
Laflamme, Raymond [2 ,3 ,4 ]
Balu, Radhakrishnan [6 ,7 ]
Siopsis, George [1 ]
机构
[1] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA
[2] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[3] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
[4] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[5] 1QB Informat Technol 1QBit, Vancouver, BC V6E 4B1, Canada
[6] Army Res Lab, Comp & Informat Sci Directorate, Adelphi, MD 21005 USA
[7] Univ Maryland, Dept Math, College Pk, MD 20742 USA
关键词
Generative modeling; Energy-based models; Adversarial attacks; Stochastic security; Quantum Gibbs sampling; Diffusion processes; Stochastic gradient Langevin dynamics; LEARNING ALGORITHM;
D O I
10.1007/s42484-025-00256-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Motivated by applications of quantum computers in Gibbs sampling from continuous real-valued functions, we ask whether such algorithms can provide practical advantages for machine learning models trained on classical data and seek measures for quantifying such impacts. In this study, we focus on deep energy-based models (EBM), as they require continuous-domain Gibbs sampling both during training and inference. In lieu of fault-tolerant quantum computers that can execute quantum Gibbs sampling algorithms, we use the Monte Carlo simulation of diffusion processes as a classical alternative. More specifically, we investigate whether long-run persistent chain Monte Carlo simulation of Langevin dynamics improves the quality of the representations achieved by EBMs. We consider a scheme in which the Monte Carlo simulation of a diffusion, whose drift is given by the gradient of the energy function, is used to improve the adversarial robustness and calibration score of an independent classifier network. Our results show that increasing the computational budget of Gibbs sampling in persistent contrastive divergence improves both the calibration and adversarial robustness of the model, suggesting a prospective avenue of quantum advantage for generative AI using future large-scale quantum computers.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Quantum-enhanced absorption refrigerators
    Luis A. Correa
    José P. Palao
    Daniel Alonso
    Gerardo Adesso
    Scientific Reports, 4
  • [22] Quantum-enhanced Doppler lidar
    Maximilian Reichert
    Roberto Di Candia
    Moe Z. Win
    Mikel Sanz
    npj Quantum Information, 8
  • [23] Quantum-Enhanced Machine Learning
    Dunjko, Vedran
    Taylor, Jacob M.
    Briegel, Hans J.
    PHYSICAL REVIEW LETTERS, 2016, 117 (13)
  • [24] Quantum-enhanced Doppler lidar
    Reichert, Maximilian
    Di Candia, Roberto
    Win, Moe Z.
    Sanz, Mikel
    NPJ QUANTUM INFORMATION, 2022, 8 (01)
  • [25] Quantum-enhanced nonlinear microscopy
    Catxere A. Casacio
    Lars S. Madsen
    Alex Terrasson
    Muhammad Waleed
    Kai Barnscheidt
    Boris Hage
    Michael A. Taylor
    Warwick P. Bowen
    Nature, 2021, 594 : 201 - 206
  • [26] Quantum-enhanced stochastic phase estimation with the SU(1,1) interferometer
    Zheng, Kaimin
    Mi, Minghao
    Wang, Ben
    Xu, Liang
    Hu, Liyun
    Liu, Shengshuai
    Lou, Yanbo
    Jing, Jietai
    Zhang, Lijian
    PHOTONICS RESEARCH, 2020, 8 (10) : 1653 - 1661
  • [27] Quantum-enhanced stochastic phase estimation with the SU(1,1) interferometer
    KAIMIN ZHENG
    MINGHAO MI
    BEN WANG
    LIANG XU
    LIYUN HU
    SHENGSHUAI LIU
    YANBO LOU
    JIETAI JING
    LIJIAN ZHANG
    Photonics Research, 2020, 8 (10) : 1653 - 1661
  • [28] Quantum-enhanced plenoptic imaging
    Massaroa, Gianlorenzo
    Di Lena, Francesco
    Giannellaa, Davide
    Pepea, Francesco
    Scattarella, Francesco
    Vasyukov, Sergii
    D'Angelo, Milena
    QUANTUM COMMUNICATIONS AND QUANTUM IMAGING XX, 2022, 12238
  • [29] Parallel Quantum-Enhanced Sensing
    Dowran, Mohammadjavad
    Win, Aye L.
    Jain, Umang
    Kumar, Ashok
    Lawrie, Benjamin J.
    Pooser, Raphael C.
    Marino, Alberto M.
    ACS PHOTONICS, 2024, 11 (08): : 3037 - 3045
  • [30] Optimal quantum-enhanced interferometry
    Lang, Matthias D.
    Caves, Carlton M.
    PHYSICAL REVIEW A, 2014, 90 (02):