Rates of decay for locally damped porous-elastic systems with history via operator semigroups

被引:0
|
作者
Duan, Yu-Ying [1 ]
Xiao, Ti-Jun [1 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai Key Lab Contemporary Appl Math, Shanghai 200433, Peoples R China
关键词
Porous elastic system; Operator semigroups; Local memory damping; Polynomial decay rate; Exponential stability; TIMOSHENKO SYSTEMS; STABILITY; MEMORY;
D O I
10.1007/s00233-024-10490-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a porous-elastic system with localized history damping, the memory kernel decaying exponentially. We estimate the resolvent of the generator of the associated operator semigroup along the imaginary axis and then obtain an ideal polynomial decay rate of the semigroup, regardless of wave speeds. Moreover, uniform exponential stability of the semigroup is shown if either the wave speeds are equal or an additional local frictional damping is present. These results are generalizations of the previously related ones for porous-elastic or Timoshenko systems with global history damping.
引用
收藏
页码:162 / 189
页数:28
相关论文
共 45 条
  • [21] Rates of Decay for Porous Elastic System Weakly Dissipative
    M. L. Santos
    A. D. S. Campelo
    D. S. Almeida Júnior
    Acta Applicandae Mathematicae, 2017, 151 : 1 - 26
  • [22] Theoretical and numerical stability results for a viscoelastic swelling porous-elastic system with past history
    Al-Mahdi, Adel M.
    Al-Gharabli, Mohammad M.
    Alahyane, Mohamed
    AIMS MATHEMATICS, 2021, 6 (11): : 11921 - 11949
  • [23] Well-Posedness and Stability Results for a Nonlinear Damped Porous-Elastic System with Infinite Memory and Distributed Delay Terms
    Moumen, Abdelkader
    Ouchenane, Djamel
    Bouhali, Keltoum
    Altayeb, Yousif
    MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2021, 26 (04)
  • [24] EXISTENCE, BLOW-UP AND EXPONENTIAL DECAY OF SOLUTIONS FOR A POROUS-ELASTIC SYSTEM WITH DAMPING AND SOURCE TERMS
    Vo Anh Khoa
    Le Thi Phuong Ngoc
    Nguyen Thanh Long
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2019, 8 (02): : 359 - 395
  • [25] Exponential decay and well-posedness for a one-dimensional porous-elastic system with distributed delay
    Khochemane, Houssem Eddine
    Bouzettouta, Lamine
    Guerouah, Amin
    APPLICABLE ANALYSIS, 2021, 100 (14) : 2950 - 2964
  • [26] GLOBAL WELL-POSEDNESS AND ENERGY DECAY FOR A ONE DIMENSIONAL POROUS-ELASTIC SYSTEM SUBJECT TO A NEUTRAL DELAY
    Khochemane, Houssem eddine
    Labidi, Sara
    Loucif, Sami
    Djebabla, Abdelhak
    MATHEMATICA BOHEMICA, 2025, 150 (01): : 109 - 138
  • [27] A study on decay mild solutions for damped elastic systems in Banach spaces
    Gou, Haide
    Ma, Weifeng
    MONATSHEFTE FUR MATHEMATIK, 2023, 202 (3): : 515 - 539
  • [28] A study on decay mild solutions for damped elastic systems in Banach spaces
    Haide Gou
    Weifeng Ma
    Monatshefte für Mathematik, 2023, 202 : 515 - 539
  • [29] EXPONENTIAL DECAY FOR LINEAR DAMPED POROUS THERMOELASTIC SYSTEMS WITH SECOND SOUND
    Messaoudi, Salim A.
    Fareh, Abdelfeteh
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (02): : 599 - 612
  • [30] Well-posedness and general decay for a porous-elastic system with microtemperatures effects and time-varying delay term
    Foughali, Fouzia
    Zitouni, Salah
    Bouzettouta, Lamine
    Khochemane, Houssem Eddine
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (05):