Rates of decay for locally damped porous-elastic systems with history via operator semigroups

被引:0
|
作者
Duan, Yu-Ying [1 ]
Xiao, Ti-Jun [1 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai Key Lab Contemporary Appl Math, Shanghai 200433, Peoples R China
关键词
Porous elastic system; Operator semigroups; Local memory damping; Polynomial decay rate; Exponential stability; TIMOSHENKO SYSTEMS; STABILITY; MEMORY;
D O I
10.1007/s00233-024-10490-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a porous-elastic system with localized history damping, the memory kernel decaying exponentially. We estimate the resolvent of the generator of the associated operator semigroup along the imaginary axis and then obtain an ideal polynomial decay rate of the semigroup, regardless of wave speeds. Moreover, uniform exponential stability of the semigroup is shown if either the wave speeds are equal or an additional local frictional damping is present. These results are generalizations of the previously related ones for porous-elastic or Timoshenko systems with global history damping.
引用
收藏
页码:162 / 189
页数:28
相关论文
共 45 条
  • [1] On the decay of solutions for porous-elastic systems with history
    Pamplona, Paulo Xavier
    Munoz Rivera, Jaime E.
    Quintanilla, Ramon
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 379 (02) : 682 - 705
  • [2] General decay of a nonlinear damping porous-elastic system with past history
    Khochemane H.E.
    Bouzettouta L.
    Zitouni S.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2019, 65 (2) : 249 - 275
  • [3] On the Decay Rates of Porous Elastic Systems
    M. L. Santos
    A. D. S. Campelo
    D. S. Almeida Júnior
    Journal of Elasticity, 2017, 127 : 79 - 101
  • [4] On the Decay Rates of Porous Elastic Systems
    Santos, M. L.
    Campelo, A. D. S.
    Almeida Junior, D. S.
    JOURNAL OF ELASTICITY, 2017, 127 (01) : 79 - 101
  • [5] On porous-elastic systems with Fourier law
    Santos, M. L.
    Campelo, A. D. S.
    Oliveira, M. L. S.
    APPLICABLE ANALYSIS, 2019, 98 (06) : 1181 - 1197
  • [6] Energy decay for a porous-elastic system with nonlinear localized damping
    Santos, M. L.
    Almeida Junior, D. S.
    Cordeiro, S. M. S.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (01):
  • [7] Energy decay for a porous-elastic system with nonlinear localized damping
    M. L. Santos
    D. S. Almeida Júnior
    S. M. S. Cordeiro
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [8] Exponential decay in a porous-elastic system with memory and neutral delay
    Dridi, Hanni
    Apalara, Tijani A.
    AFRIKA MATEMATIKA, 2025, 36 (01)
  • [9] Exponential decay in a porous-elastic system with memory and neutral delayExponential decay in a porous-elastic system with memory and...H. Dridi, T. A. Apalara
    Hanni Dridi
    Tijani A. Apalara
    Afrika Matematika, 2025, 36 (1)
  • [10] General energy decay result for a viscoelastic swelling porous-elastic system
    Youkana, Abderrahmane
    Al-Mahdi, Adel M.
    Messaoudi, Salim A.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (03):