The 3-path-connectivity of pancake graphsThe 3-path-connectivity of pancake graphsJ. Wang, D. Cheng

被引:0
|
作者
Jiaqi Wang [1 ]
Dongqin Cheng [1 ]
机构
[1] College of Information Science and Technology,Department of Mathematics
关键词
Regular graph; Pancake graph; Path; Path connectivity;
D O I
10.1007/s11227-024-06702-9
中图分类号
学科分类号
摘要
Let G be a simple connected graph with vertex set V(G) and edge set E(G). For Φ⊆V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi \subseteq V(G)$$\end{document}, a path that includes all vertices of Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi$$\end{document} is referred to an Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi$$\end{document}-path of G. Two Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi$$\end{document}-paths S1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{1}$$\end{document} and S2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{2}$$\end{document} of G are internally disjoint if V(S1)∩V(S2)=Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V(S_{1})\cap V(S_{2})=\Phi$$\end{document} and E(S1)∩E(S2)=∅\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E(S_{1})\cap E(S_{2})=\emptyset$$\end{document}. Let πG(Φ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _{G}(\Phi )$$\end{document} be the maximum number of internally disjoint Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi$$\end{document}-paths. For an integer k with k≥\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge$$\end{document} 2, the k-path-connectivity πk(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _{k}(G)$$\end{document} is defined as the minimum πG(Φ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _{G}(\Phi )$$\end{document} over all k-subsets of V(G). In this paper, we determine 3-path-connectivity of the pancake graphs Pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{n}$$\end{document}. By analyzing the structural characteristics of Pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{n}$$\end{document}, we show that π3(Pn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _{3}(P_{n})$$\end{document} = 3(n-1)-14\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\lfloor \frac{3(n-1)-1}{4} \right\rfloor$$\end{document} where n≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 3$$\end{document}.
引用
收藏
相关论文
共 14 条
  • [11] A 3D REM-Guided UAV Path Planning Method under Communication Connectivity Constraints
    Liu, Xingguang
    Zhou, Li
    Zhang, Xiaoying
    Tan, Xiang
    Wei, Jibo
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [12] Fracture connectivity and flow path tortuosity elucidated from advective transport to a pumping well in complex 3D networks
    Reeves, Donald M.
    Pham, Hai
    Parashar, Rishi
    Sund, Nicole L.
    ENGINEERING GEOLOGY, 2023, 313
  • [13] Fault-tolerability analysis of hypercubes based on 3-component path-structure connectivity
    Zhu, Bo
    Zhang, Shumin
    Chang, Jou-Ming
    Zou, Jinyu
    DISCRETE APPLIED MATHEMATICS, 2025, 370 : 111 - 123
  • [14] Integration of 3G connectivity in planetlab Europe :A step of an evolutionary path towards heterogeneous large scale network testbeds
    Botta A.
    Canonico R.
    Di Stasi G.
    Pescapé A.
    Ventre G.
    Fdida S.
    Mobile Networks and Applications, 2010, 15 (03) : 344 - 355