The 3-path-connectivity of pancake graphsThe 3-path-connectivity of pancake graphsJ. Wang, D. Cheng

被引:0
|
作者
Jiaqi Wang [1 ]
Dongqin Cheng [1 ]
机构
[1] College of Information Science and Technology,Department of Mathematics
关键词
Regular graph; Pancake graph; Path; Path connectivity;
D O I
10.1007/s11227-024-06702-9
中图分类号
学科分类号
摘要
Let G be a simple connected graph with vertex set V(G) and edge set E(G). For Φ⊆V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi \subseteq V(G)$$\end{document}, a path that includes all vertices of Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi$$\end{document} is referred to an Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi$$\end{document}-path of G. Two Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi$$\end{document}-paths S1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{1}$$\end{document} and S2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{2}$$\end{document} of G are internally disjoint if V(S1)∩V(S2)=Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V(S_{1})\cap V(S_{2})=\Phi$$\end{document} and E(S1)∩E(S2)=∅\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E(S_{1})\cap E(S_{2})=\emptyset$$\end{document}. Let πG(Φ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _{G}(\Phi )$$\end{document} be the maximum number of internally disjoint Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi$$\end{document}-paths. For an integer k with k≥\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge$$\end{document} 2, the k-path-connectivity πk(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _{k}(G)$$\end{document} is defined as the minimum πG(Φ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _{G}(\Phi )$$\end{document} over all k-subsets of V(G). In this paper, we determine 3-path-connectivity of the pancake graphs Pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{n}$$\end{document}. By analyzing the structural characteristics of Pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{n}$$\end{document}, we show that π3(Pn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _{3}(P_{n})$$\end{document} = 3(n-1)-14\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\lfloor \frac{3(n-1)-1}{4} \right\rfloor$$\end{document} where n≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 3$$\end{document}.
引用
收藏
相关论文
共 14 条
  • [1] The 3-path-connectivity of pancake graphs
    Wang, Jiaqi
    Cheng, Dongqin
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (01):
  • [2] The 3-path-connectivity of the hypercubes
    Zhu, Wen-Han
    Hao, Rong-Xia
    Li, Lin
    DISCRETE APPLIED MATHEMATICS, 2022, 322 : 203 - 209
  • [3] The 3-path-connectivity of the star graphs
    Li, Lin
    Hao, Rong-Xia
    Zhu, Wen -Han
    DISCRETE APPLIED MATHEMATICS, 2024, 357 : 215 - 235
  • [4] 3-path-connectivity of Cayley graphs generated by transposition trees
    Jin, Qihui
    Li, Shasha
    Xie, Mengmeng
    DISCRETE APPLIED MATHEMATICS, 2023, 339 : 292 - 299
  • [5] The 3-path-connectivity of the k-ary n-cube
    Zhu, Wen -Han
    Hao, Rong-Xia
    Feng, Yan-Quan
    Lee, Jaeun
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 436
  • [6] The generalized 3-connectivity of burnt pancake graphs and godan graphs
    Wang, Jing
    Zhang, Zuozheng
    Huang, Yuanqiu
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2023, 20 (01) : 98 - 103
  • [7] The General (α, 3)-Path Connectivity Indices of Polycyclic Aromatic Hydrocarbons
    Wang, Haiying
    Li, Chuantao
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2018, 2018
  • [8] Connectivity-Aware 3D UAV Path Design With Deep Reinforcement Learning
    Xie, Hao
    Yang, Dingcheng
    Xiao, Lin
    Lyu, Jiangbin
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (12) : 13022 - 13034
  • [9] Path 3-(edge-)connectivity of lexicographic product graphs
    Ma, Tianlong
    Wang, Jinling
    Zhang, Mingzu
    Liang, Xiaodong
    DISCRETE APPLIED MATHEMATICS, 2020, 282 : 152 - 161
  • [10] Directed Path 3-Arc-Connectivity of Cartesian Product Digraphs
    Wei, Xiaosha
    SYMMETRY-BASEL, 2024, 16 (04):