ChromaFold predicts the 3D contact map from single-cell chromatin accessibility

被引:2
|
作者
Gao, Vianne R. [1 ,2 ]
Yang, Rui [1 ,2 ]
Das, Arnav [3 ]
Luo, Renhe [4 ]
Luo, Hanzhi [5 ,6 ]
McNally, Dylan R. [7 ]
Karagiannidis, Ioannis [8 ]
Rivas, Martin A. [8 ]
Wang, Zhong-Min [9 ,10 ,11 ]
Barisic, Darko [8 ]
Karbalayghareh, Alireza [1 ]
Wong, Wilfred [1 ,2 ]
Zhan, Yingqian A. [12 ]
Chin, Christopher R. [8 ]
Noble, William S. [3 ]
Bilmes, Jeff A. [3 ]
Apostolou, Effie [13 ]
Kharas, Michael G. [5 ,6 ]
Beguelin, Wendy [8 ]
Viny, Aaron D. [14 ,15 ]
Huangfu, Danwei [4 ]
Rudensky, Alexander Y. [9 ,10 ,11 ]
Melnick, Ari M. [8 ]
Leslie, Christina S. [1 ]
机构
[1] Mem Sloan Kettering Canc Ctr, Computat & Syst Biol Program, New York, NY 10065 USA
[2] Tri Inst Program Computat Biol & Med, New York, NY USA
[3] Univ Washington, Seattle, WA USA
[4] Sloan Kettering Inst, Dev Biol Program, New York, NY USA
[5] Mem Sloan Kettering Canc Ctr, Expt Therapeut Ctr, Mol Pharmacol Program, New York, NY USA
[6] Mem Sloan Kettering Canc Ctr, Ctr Stem Cell Biol, New York, NY USA
[7] Cornell Univ, Caryl & Israel Englander Inst Precis Med, Inst Computat Biomed, Weill Cornell Med, New York, NY USA
[8] Weill Cornell Med Coll, Dept Med, Div Hematol & Med Oncol, New York, NY USA
[9] Howard Hughes Med Inst, New York, NY USA
[10] Sloan Kettering Inst, Immunol Program, New York, NY USA
[11] Mem Sloan Kettering Canc Ctr, Ludwig Ctr, New York, NY USA
[12] Mem Sloan Kettering Canc Ctr, Ctr Epigenet Res, New York, NY USA
[13] Weill Cornell Med, Sandra & Edward Meyer Canc Ctr, Joan & Sanford I Weill Dept Med, New York, NY USA
[14] Columbia Univ, Irving Med Ctr, Dept Med,Herbert Irving Comprehens Canc Ctr, Div Hematol & Oncol,Columbia Stem Cell Initiat, New York, NY USA
[15] Columbia Univ, Herbert Irving Comprehens Canc Ctr, Div Genet & Dev, Columbia Stem Cell Initiat,Irving Med Ctr, New York, NY USA
基金
美国国家卫生研究院;
关键词
HI-C DATA; EXPRESSION; PRINCIPLES;
D O I
10.1038/s41467-024-53628-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Identifying cell-type-specific 3D chromatin interactions between regulatory elements can help decipher gene regulation and interpret disease-associated non-coding variants. However, achieving this resolution with current 3D genomics technologies is often infeasible given limited input cell numbers. We therefore present ChromaFold, a deep learning model that predicts 3D contact maps, including regulatory interactions, from single-cell ATAC sequencing (scATAC-seq) data alone. ChromaFold uses pseudobulk chromatin accessibility, co-accessibility across metacells, and a CTCF motif track as inputs and employs a lightweight architecture to train on standard GPUs. Trained on paired scATAC-seq and Hi-C data in human samples, ChromaFold accurately predicts the 3D contact map and peak-level interactions across diverse human and mouse test cell types. Compared to leading contact map prediction models that use ATAC-seq and CTCF ChIP-seq, ChromaFold achieves state-of-the-art performance using only scATAC-seq. Finally, fine-tuning ChromaFold on paired scATAC-seq and Hi-C in a complex tissue enables deconvolution of chromatin interactions across cell subpopulations. Obtaining a high-resolution contact map using current 3D genomics technologies can be challenging with small input cell numbers. Here, the authors develop ChromaFold, a deep learning model that predicts cell-type-specific 3D contact maps from single-cell chromatin accessibility data alone.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Chromatin-accessibility estimation from single-cell ATAC-seq data with scOpen
    Zhijian Li
    Christoph Kuppe
    Susanne Ziegler
    Mingbo Cheng
    Nazanin Kabgani
    Sylvia Menzel
    Martin Zenke
    Rafael Kramann
    Ivan G. Costa
    Nature Communications, 12
  • [42] 3D projection electrophoresis for single-cell immunoblotting
    Samantha M. Grist
    Andoni P. Mourdoukoutas
    Amy E. Herr
    Nature Communications, 11
  • [43] Single-cell 3D electro-rotation
    Huang, Liang
    Zhao, Peng
    Liang, Fei
    Wang, Wenhui
    MICROFLUIDICS IN CELL BIOLOGY, PT C: MICROFLUIDICS FOR CELLULAR AND SUBCELLULAR ANALYSIS, 2018, 148 : 97 - +
  • [44] Accurate Annotation for Differentiating and Imbalanced Cell Types in Single-Cell Chromatin Accessibility Data
    Jia, Yuhang
    Li, Siyu
    Jiang, Rui
    Chen, Shengquan
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2024, 21 (03) : 461 - 471
  • [45] 3D projection electrophoresis for single-cell immunoblotting
    Grist, Samantha M.
    Mourdoukoutas, Andoni P.
    Herr, Amy E.
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [46] The two waves in single-cell 3D genomics
    Ulianov, Sergey, V
    Razin, Sergey, V
    SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2022, 121 : 143 - 152
  • [47] ASTER: accurately estimating the number of cell types in single-cell chromatin accessibility data
    Chen, Shengquan
    Wang, Rongxiang
    Long, Wenxin
    Jiang, Rui
    BIOINFORMATICS, 2023, 39 (01)
  • [48] ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis
    Granja, Jeffrey M.
    Corces, M. Ryan
    Pierce, Sarah E.
    Bagdatli, S. Tansu
    Choudhry, Hani
    Chang, Howard Y.
    Greenleaf, William J.
    NATURE GENETICS, 2021, 53 (03) : 403 - +
  • [49] Single-cell profiling of proteins and chromatin accessibility using PHAGE-ATAC
    Evgenij Fiskin
    Caleb A. Lareau
    Leif S. Ludwig
    Gökcen Eraslan
    Feimei Liu
    Aaron M. Ring
    Ramnik J. Xavier
    Aviv Regev
    Nature Biotechnology, 2022, 40 : 374 - 381
  • [50] Profiling the genetic determinants of chromatin accessibility with scalable single-cell CRISPR screens
    Noa Liscovitch-Brauer
    Antonino Montalbano
    Jiale Deng
    Alejandro Méndez-Mancilla
    Hans-Hermann Wessels
    Nicholas G. Moss
    Chia-Yu Kung
    Akash Sookdeo
    Xinyi Guo
    Evan Geller
    Suma Jaini
    Peter Smibert
    Neville E. Sanjana
    Nature Biotechnology, 2021, 39 : 1270 - 1277