A piezoelectric wind-induced vibration energy harvester via the Venturi effect

被引:0
|
作者
Zhu, Mengsong [1 ]
Kuang, Zhenli [1 ]
Liao, Weilin [2 ]
Zhang, Jinbo [1 ]
Fu, Linfei [1 ]
Zhang, Zhonghua [1 ]
Kan, Junwu [1 ]
机构
[1] Zhejiang Normal Univ, Inst Precis Machinery & Smart Struct, 688 Ying bin Rd, Jinhua 321004, Zhejiang, Peoples R China
[2] Tsinghua Univ, Dept Engn Mech, Appl Mech Lab, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
DESIGN;
D O I
10.1063/5.0249187
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this Letter, the Venturi effect is introduced to change the vibration behaviors of a downwind bluff body and a piezoelectric wind-induced vibration energy harvester using the Venturi effect (VE-PWVEH) is reported to offer an alternative solution to enable a high-performance downwind PWVEH. Also, the power generation characteristics were readily adjusted by the flow channel forming the Venturi effect without modifying the PWVEH structure. So, the VE-PWVEH could possess both great power-generating capability at low wind speed and strong robustness at high wind speed. The results demonstrated that both the output voltage and cut-in wind speed were affected by the attack angle of two rectangular plates used for stimulating the constricted channel. There was an optimal attack angle of 60 degrees where a maximum peak voltage of the VE-PWVEH was increased by 621% and the cut-in wind speed was reduced by 171% compared with the harvester without the Venturi effect. Besides, it demonstrated the VE-PWVEH could achieve an output power of 0.863 mW and illuminate about 120 blue LEDs in series. The introduction of the Venturi effect provides a simple and viable method of flow field disturbance to tune the performance of PWVEHs.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Micromachined Piezoelectric Energy Harvester with Low Vibration
    Park, Jong C.
    Park, Jae Y.
    ISAF: 2009 18TH IEEE INTERNATIONAL SYMPOSIUM ON THE APPLICATIONS OF FERROELECTRICS, 2009, : 406 - 411
  • [42] Modeling and Simulation of a Piezoelectric Vibration Energy Harvester
    Kundu, Sushanta
    Nemade, Harshal B.
    INTERNATIONAL CONFERENCE ON VIBRATION PROBLEMS 2015, 2016, 144 : 568 - 575
  • [43] Modelling and Verification of Piezoelectric Vibration Energy Harvester
    Hadas, Zdenek
    Lan, Radek
    ADVANCED MECHATRONICS SOLUTIONS, 2016, 393 : 305 - 310
  • [44] Regular and chaotic vibration in a piezoelectric energy harvester
    Grzegorz Litak
    Michael I. Friswell
    Sondipon Adhikari
    Meccanica, 2016, 51 : 1017 - 1025
  • [45] A Hybrid Piezoelectric and Electrostatic Vibration Energy Harvester
    Madinei, H.
    Khodaparast, H. Haddad
    Adhikari, S.
    Friswell, M. I.
    SHOCK & VIBRATION, AIRCRAFT/AEROSPACE, ENERGY HARVESTING, ACOUSTICS & OPTICS, VOL 9, 2016, : 189 - 195
  • [46] Piezoelectric Vibration Energy Harvester in Electric Vehicles
    Li, Shanshan
    Wu, Zhengbin
    Su, Yikun
    Xi, Kui
    APPLIED ENERGY TECHNOLOGY, PTS 1 AND 2, 2013, 724-725 : 1427 - +
  • [47] A Broadband Frequency Piezoelectric Vibration Energy Harvester
    Ma Hua-An
    Liu Jing-Quan
    Tang Gang
    Yang Chun-Sheng
    Li Yi-Gui
    He Dan-Nong
    MEMS/NEMS NANO TECHNOLOGY, 2011, 483 : 626 - +
  • [48] Effect of Wind-Induced Vibration on Measurement Range of Microcantilever Anemometer
    Ye, Yizhou
    Wan, Shu
    He, Xuefeng
    MICROMACHINES, 2022, 13 (05)
  • [49] Regular and chaotic vibration in a piezoelectric energy harvester
    Litak, Grzegorz
    Friswell, Michael I.
    Adhikari, Sondipon
    MECCANICA, 2016, 51 (05) : 1017 - 1025
  • [50] Wind-induced vibration of offshore platforms
    Petrov, AA
    FLOW-INDUCED VIBRATION, 2000, : 467 - 470