The article deals with discrete Klein–Gordon-type equations that describe infinite chains of linearly coupled nonlinear oscillators with nonlocal interaction. It is assumed that every oscillator interacts with several neighbors on both sides. The main result concerns the existence of solitary traveling wave solutions for such equations. By means of the critical point theory, sufficient conditions for the existence of such solutions are obtained.
机构:
Warsaw Univ Technol, Fac Math & Informat Sci, Dept Integral Equat, PL-00661 Warsaw, PolandWarsaw Univ Technol, Fac Math & Informat Sci, Dept Integral Equat, PL-00661 Warsaw, Poland
机构:
Univ Strasbourg, CNRS, IRMA UMR 7501, F-67000 Strasbourg, FranceUniv Strasbourg, CNRS, IRMA UMR 7501, F-67000 Strasbourg, France
Cote, Raphael
Martel, Yvan
论文数: 0引用数: 0
h-index: 0
机构:
Inst Polytech Paris, CMLS, CNRS, Ecole Polytech, F-91128 Palaiseau, FranceUniv Strasbourg, CNRS, IRMA UMR 7501, F-67000 Strasbourg, France
Martel, Yvan
Yuan, Xu
论文数: 0引用数: 0
h-index: 0
机构:
Inst Polytech Paris, CMLS, CNRS, Ecole Polytech, F-91128 Palaiseau, France
Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R ChinaUniv Strasbourg, CNRS, IRMA UMR 7501, F-67000 Strasbourg, France
Yuan, Xu
Zhao, Lifeng
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R ChinaUniv Strasbourg, CNRS, IRMA UMR 7501, F-67000 Strasbourg, France