On von Neumann’s inequality on the polydiscOn von Neumann’s inequality on the polydiscM. Hartz

被引:0
|
作者
Michael Hartz [1 ]
机构
[1] Fachrichtung Mathematik,
[2] Universität des Saarlandes,undefined
关键词
Primary 47A13; Secondary 47A30; 47A60;
D O I
10.1007/s00208-024-03040-2
中图分类号
学科分类号
摘要
Given a d-tuple T of commuting contractions on Hilbert space and a polynomial p in d-variables, we seek upper bounds for the norm of the operator p(T). Results of von Neumann and Andô show that if d=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=1$$\end{document} or d=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=2$$\end{document}, the upper bound ‖p(T)‖≤‖p‖∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert p(T)\Vert \le \Vert p\Vert _\infty $$\end{document}, holds, where the supremum norm is taken over the polydisc Dd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}^d$$\end{document}. We show that for d=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=3$$\end{document}, there exists a universal constant C such that ‖p(T)‖≤C‖p‖∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert p(T)\Vert \le C \Vert p\Vert _\infty $$\end{document} for every homogeneous polynomial p. We also show that for general d and arbitrary polynomials, the norm ‖p(T)‖\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert p(T)\Vert $$\end{document} is dominated by a certain Besov-type norm of p.
引用
收藏
页码:5235 / 5264
页数:29
相关论文
共 50 条
  • [1] A multivariable von Neumann's inequality
    Okayasu, T
    PROCEEDINGS OF THE SECOND ISAAC CONGRESS, VOLS 1 AND 2, 2000, 7 : 671 - 677
  • [2] On von Neumann's inequality on the polydisc
    Hartz, Michael
    MATHEMATISCHE ANNALEN, 2024,
  • [3] Von Neumann's inequality for noncommuting contractions
    Drury, S. W.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (01) : 305 - 315
  • [4] Von Neumann's trace inequality for tensors
    Chretien, Stephane
    Wei, Tianwen
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 482 : 149 - 157
  • [5] Subvarieties of the Tetrablock and von Neumann's Inequality
    Pal, Sourav
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2016, 65 (06) : 2051 - 2079
  • [6] von Neumann's inequality for the Hartogs triangle
    Chavan, Sameer
    Jain, Shubham
    Pramanick, Paramita
    NEW YORK JOURNAL OF MATHEMATICS, 2022, 28 : 791 - 799
  • [7] VON NEUMANN INEQUALITY
    JANAS, J
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1973, 21 (08): : 691 - 694
  • [9] NOTE ON VON NEUMANN INEQUALITY
    MLAK, W
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1971, 19 (09): : 843 - &
  • [10] On the generalized von Neumann inequality
    Gaspar, D
    Suciu, N
    RECENT ADVANCES IN OPERATOR THEORY AND RELATED TOPICS: THE BELA SZOKEFALVI-NAGY MEMORIAL VOLUME, 2001, 127 : 291 - 304