3D convolutional deep learning for nonlinear estimation of body composition from whole body morphology

被引:0
|
作者
Tian, Isaac Y. [1 ]
Liu, Jason [1 ]
Wong, Michael C. [2 ]
Kelly, Nisa N. [2 ]
Liu, Yong E. [2 ]
Garber, Andrea K. [3 ]
Heymsfield, Steven B. [4 ]
Curless, Brian [1 ]
Shepherd, John A. [2 ]
机构
[1] Univ Washington, Paul G Allen Sch Comp Sci Engn, Seattle, WA 98195 USA
[2] Univ Hawaii Manoa, Univ Hawaii, Ctr Canc, Honolulu, HI 96822 USA
[3] Univ Calif San Francisco, UCSF Sch Med, San Francisco, CA USA
[4] Louisiana State Univ, Pennington Biomed Res Ctr, Baton Rouge, LA USA
来源
NPJ DIGITAL MEDICINE | 2025年 / 8卷 / 01期
基金
美国国家卫生研究院;
关键词
METABOLIC SYNDROME; ALL-CAUSE; MORTALITY; OBESITY; MALNUTRITION; CANCER; RISK;
D O I
10.1038/s41746-025-01469-6
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Body composition prediction from 3D optical imagery has previously been studied with linear algorithms. In this study, we present a novel application of deep 3D convolutional graph networks and nonlinear Gaussian process regression for human body shape parameterization and body composition estimation. We trained and tested linear and nonlinear models with ablation studies on a novel ensemble body shape dataset containing 4286 scans. Nonlinear GPR produced up to a 20% reduction in prediction error and up to a 30% increase in precision over linear regression for both sexes in 10 tested body composition variables. Deep shape features produced 6-8% reduction in prediction error over linear PCA features for males only, and a 4-14% reduction in precision error for both sexes. All coefficients of determination (R2) for all predicted variables were above 0.86 and achieved lower estimation RMSEs than all previous work on 10 metrics of body composition.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Lifting from the Deep: Convolutional 3D Pose Estimation from a Single Image
    Tome, Denis
    Russell, Chris
    Agapito, Lourdes
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 5689 - 5698
  • [22] Whole-Body PET Estimation From Low Count Statistics Using Deep Convolutional Neural Networks
    Dong, X.
    Lei, Y.
    Wang, T.
    Higgins, K.
    Liu, T.
    Curran, W.
    Mao, H.
    Nye, J.
    Yang, X.
    MEDICAL PHYSICS, 2019, 46 (06) : E193 - E193
  • [23] Body Weight Estimation for Pigs Based on 3D Hybrid Filter and Convolutional Neural Network
    Liu, Zihao
    Hua, Jingyi
    Xue, Hongxiang
    Tian, Haonan
    Chen, Yang
    Liu, Haowei
    SENSORS, 2023, 23 (18)
  • [24] Patient 3D body pose estimation from pressure imaging
    Leslie Casas
    Nassir Navab
    Stefanie Demirci
    International Journal of Computer Assisted Radiology and Surgery, 2019, 14 : 517 - 524
  • [25] Patient 3D body pose estimation from pressure imaging
    Casas, Leslie
    Navab, Nassir
    Demirci, Stefanie
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2019, 14 (03) : 517 - 524
  • [26] A Review of Commercially Available 3D Surface Imaging Systems for Body Composition Estimation
    Bullas, Alice May
    Greenwood, Rebecca
    Thelwell, Michael
    Choppin, Simon
    APPLIED SCIENCES-BASEL, 2022, 12 (17):
  • [27] Nonlinear Observer for 3D Rigid Body Motion Estimation Using Doppler Measurements
    Bras, Sergio
    Izadi, Maziar
    Silvestre, Carlos
    Sanyal, Amit
    Oliveira, Paulo
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (11) : 3580 - 3585
  • [28] 3D WHOLE-BODY SCAN FOR CLINICAL ANTHROPOMETRY AND DETERMINING BODY COMPOSITION IN T2DM PATIENTS
    Misnikova, I.
    Kovaleva, Y.
    Gubkina, V.
    Dreval, A.
    DIABETES TECHNOLOGY & THERAPEUTICS, 2019, 21 : A117 - A118
  • [29] Nonlinear Observer for 3D Rigid Body Motion
    Bras, Sergio
    Izadi, Maziar
    Silvestre, Carlos
    Sanyal, Amit
    Oliveira, Paulo
    2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 2588 - 2593
  • [30] Accuracy Of Body Fat Estimation Using 3d Whole Body Optical Scan Compared To Circumference-based Methods
    Oliver, Tyler E.
    Castellani, Michael P.
    Bartlett, P. Matthew
    Foulis, Stephen A.
    Walker, Leila A.
    Taylor, Kathryn M.
    McClung, Holly L.
    MEDICINE & SCIENCE IN SPORTS & EXERCISE, 2023, 55 (09) : 369 - 369