3D convolutional deep learning for nonlinear estimation of body composition from whole body morphology

被引:0
|
作者
Tian, Isaac Y. [1 ]
Liu, Jason [1 ]
Wong, Michael C. [2 ]
Kelly, Nisa N. [2 ]
Liu, Yong E. [2 ]
Garber, Andrea K. [3 ]
Heymsfield, Steven B. [4 ]
Curless, Brian [1 ]
Shepherd, John A. [2 ]
机构
[1] Univ Washington, Paul G Allen Sch Comp Sci Engn, Seattle, WA 98195 USA
[2] Univ Hawaii Manoa, Univ Hawaii, Ctr Canc, Honolulu, HI 96822 USA
[3] Univ Calif San Francisco, UCSF Sch Med, San Francisco, CA USA
[4] Louisiana State Univ, Pennington Biomed Res Ctr, Baton Rouge, LA USA
来源
NPJ DIGITAL MEDICINE | 2025年 / 8卷 / 01期
基金
美国国家卫生研究院;
关键词
METABOLIC SYNDROME; ALL-CAUSE; MORTALITY; OBESITY; MALNUTRITION; CANCER; RISK;
D O I
10.1038/s41746-025-01469-6
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Body composition prediction from 3D optical imagery has previously been studied with linear algorithms. In this study, we present a novel application of deep 3D convolutional graph networks and nonlinear Gaussian process regression for human body shape parameterization and body composition estimation. We trained and tested linear and nonlinear models with ablation studies on a novel ensemble body shape dataset containing 4286 scans. Nonlinear GPR produced up to a 20% reduction in prediction error and up to a 30% increase in precision over linear regression for both sexes in 10 tested body composition variables. Deep shape features produced 6-8% reduction in prediction error over linear PCA features for males only, and a 4-14% reduction in precision error for both sexes. All coefficients of determination (R2) for all predicted variables were above 0.86 and achieved lower estimation RMSEs than all previous work on 10 metrics of body composition.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Clinical anthropometrics and body composition from 3D whole-body surface scans
    B K Ng
    B J Hinton
    B Fan
    A M Kanaya
    J A Shepherd
    European Journal of Clinical Nutrition, 2016, 70 : 1265 - 1270
  • [2] Clinical anthropometrics and body composition from 3D whole-body surface scans
    Ng, B. K.
    Hinton, B. J.
    Fan, B.
    Kanaya, A. M.
    Shepherd, J. A.
    EUROPEAN JOURNAL OF CLINICAL NUTRITION, 2016, 70 (11) : 1265 - 1270
  • [3] 3D Body shape for regional and appendicular body composition estimation
    Zheng, Yijiang
    Long, Zhuoxin
    Zhang, Xiaoke
    Hahn, James K.
    MEDICAL IMAGING 2023, 2023, 12464
  • [4] Correction: Clinical anthropometrics and body composition from 3D whole-body surface scans
    B. K. Ng
    B. J. Hinton
    B. Fan
    A. M. Kanaya
    J. A. Shepherd
    European Journal of Clinical Nutrition, 2021, 75 : 574 - 574
  • [5] The role of 3D body scanning in body composition
    Stewart, Arthur D.
    EUROPEAN JOURNAL OF CLINICAL NUTRITION, 2015, 69 : S8 - S9
  • [6] Accurate 3D Hand Pose Estimation for Whole-Body 3D Human Mesh Estimation
    Moon, Gyeongsik
    Choi, Hongsuk
    Lee, Kyoung Mu
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 2307 - 2316
  • [7] A machine learning approach relating 3D body scans to body composition in humans
    Pleuss, James D.
    Talty, Kevin
    Morse, Steven
    Kuiper, Patrick
    Scioletti, Michael
    Heymsfield, Steven B.
    Thomas, Diana M.
    EUROPEAN JOURNAL OF CLINICAL NUTRITION, 2019, 73 (02) : 200 - 208
  • [8] A machine learning approach relating 3D body scans to body composition in humans
    James D. Pleuss
    Kevin Talty
    Steven Morse
    Patrick Kuiper
    Michael Scioletti
    Steven B. Heymsfield
    Diana M. Thomas
    European Journal of Clinical Nutrition, 2019, 73 : 200 - 208
  • [9] Prediction of total and regional body composition from 3D body shape
    Qiao, Chexuan
    Rolfe, Emanuella De Lucia
    Mak, Ethan
    Sengupta, Akash
    Powell, Richard
    Watson, Laura P. E.
    Heymsfield, Steven B.
    Shepherd, John A.
    Wareham, Nicholas
    Brage, Soren
    Cipolla, Roberto
    NPJ DIGITAL MEDICINE, 2024, 7 (01):
  • [10] Body weight estimation of beef cattle with 3D deep learning model: PointNet plus
    Hou, Zixia
    Huang, Lyuwen
    Zhang, Qi
    Miao, Yuanshuang
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2023, 213