Vacuum polarization effects of pointlike impurity

被引:0
|
作者
Grats, Yuri, V [1 ]
Spirin, Pavel [1 ]
机构
[1] MV Lomonosov Moscow State Univ, Dept Theoret Phys, Moscow 119991, Russia
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2025年 / 140卷 / 02期
关键词
ZERO-RANGE POTENTIALS; QUANTUM-FIELD THEORY; SCALAR FIELD; ENERGY; MECHANICS;
D O I
10.1140/epjp/s13360-025-06096-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop precise formulation for the effects of vacuum polarization near a pointlike source with a zero-range (delta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta$$\end{document}-like) potential in three spatial dimensions. There are different ways of introducing delta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta$$\end{document}-interaction in the framework of quantum theory. We discuss the approach based on the concept of self-adjoint extensions of densely defined symmetric operators. Within this approach, we consider the real massive scalar field in three-dimensional Euclidean space with a single extracted point. Appropriate boundary conditions, imposed at this point, enable one to consider all self-adjoint extensions of -Delta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$- \Delta$$\end{document} as operators which can describe a pointlike source with a zero-range potential. In this framework, we compute the renormalized vacuum expectation value of the field square <phi 2(x)> ren\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle \phi <^>{{\hspace{1.0pt}}2}(x)\rangle _{\textrm{ren}}$$\end{document} and the renormalized vacuum average of the scalar-field's energy-momentum tensor < T mu nu(x)> ren\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle T_{\mu \nu }(x)\rangle _{\textrm{ren}}$$\end{document}. Asymptotic cases are discussed in detail.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] VACUUM POLARIZATION EFFECTS IN LATTICE GAUGE-THEORIES
    DOSCH, HG
    MULLER, VF
    NUCLEAR PHYSICS B, 1979, 158 (2-3) : 419 - 428
  • [32] Effects of nonlinear vacuum electrodynamics on the polarization plane of light
    Perlick, Volker
    Laemmerzahl, Claus
    Macias, Alfredo
    PHYSICAL REVIEW D, 2018, 98 (10):
  • [33] POLARIZATION OF THE VACUUM
    RAYSKI, J
    PHYSICAL REVIEW, 1949, 75 (12): : 1961 - 1962
  • [34] ESSENTIALLY NONPERTURBATIVE VACUUM POLARIZATION EFFECTS IN A TWO-DIMENSIONAL DIRAC-COULOMB SYSTEM FOR Z &gt; Zcr: VACUUM POLARIZATION EFFECTS
    Sveshnikov, K. A.
    Voronina, Yu S.
    Davydov, A. S.
    Grashin, P. A.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2019, 199 (01) : 533 - 561
  • [35] VACUUM POLARIZATION
    MA, ST
    PHYSICAL REVIEW, 1949, 75 (08): : 1264 - 1265
  • [36] Semiclassical approach to bound states of a pointlike impurity in a two-dimensional Dirac system
    Kim, Kun Woo
    Pereg-Barnea, Tami
    Refael, Gil
    PHYSICAL REVIEW B, 2014, 89 (08):
  • [37] Combined effects of hidden and polarization drifts on impurity transport in tokamak plasmas
    Vlad, Madalina
    Spineanu, Florin
    PHYSICS OF PLASMAS, 2018, 25 (09)
  • [38] Vacuum polarization of graphene with a supercritical Coulomb impurity: Low-energy universality and discrete scale invariance
    Nishida, Yusuke
    PHYSICAL REVIEW B, 2014, 90 (16):
  • [39] NUCLEAR-SIZE EFFECTS ON VACUUM POLARIZATION IN MUONIC PB
    GYULASSY, M
    PHYSICAL REVIEW LETTERS, 1974, 32 (24) : 1393 - 1396
  • [40] Effects of boson-vacuum polarization by a singular magnetic vortex
    Sitenko, YA
    Babansky, AY
    PHYSICS OF ATOMIC NUCLEI, 1998, 61 (09) : 1594 - 1602