Numerical optimization and experimental study of helically coiled tube heat exchanger based on Entransy degeneration theory

被引:0
|
作者
Wang, Dingbiao [1 ,2 ]
Luo, Zhan [1 ,2 ]
Wang, Guanghui [1 ,2 ,5 ]
Song, Pengfei [3 ]
Qin, Xiang [1 ,2 ]
Chen, Jiaheng [1 ,2 ]
Han, Yong [4 ]
机构
[1] Zhengzhou Univ, Sch Mech & Power Engn, Zhengzhou 450001, Peoples R China
[2] Zhengzhou Univ, Int Joint Lab New Energy Clean Utilizat Technol &, Zhengzhou 450001, Peoples R China
[3] SINOPEC Luoyang Engn Co Ltd, Luoyang 471003, Peoples R China
[4] Zhengzhou Univ Light Ind, Sch Energy & Power Engn, Zhengzhou 450001, Henan, Peoples R China
[5] Nucleon Xinxiang Crane Co LTD, Xinxiang 453400, Peoples R China
基金
中国国家自然科学基金;
关键词
Entransy degeneration theory; Multi-objective optimization; Helically coiled tube heat exchanger; Numerical simulation; Experimental study; FLOW CHARACTERISTICS; PRESSURE-DROP; SHELL SIDE; PERFORMANCE;
D O I
10.1016/j.applthermaleng.2024.124653
中图分类号
O414.1 [热力学];
学科分类号
摘要
Heat exchangers are the most frequent energy transfer equipment in energy-consuming sectors, and their design and optimization are critical for reducing environmental impact and energy waste. In this study, a thermodynamic model of a spiral coil heat exchanger is reconstructed, and the use of Entrancy degradation theory is reviewed. The idea of layered modeling of helically coiled tube heat exchanger and the double-layer cycle model with simultaneous optimization of structural parameters and flow conditions are proposed, and experiments are performed to verify the reliability of the numerical model through. Multi-objective genetic algorithm is adopted for optimization with Entransy degeneration number (N-gHE), Performance Evaluation Criteria (PEC) and Field Synergy Number (Fc) as optimization criteria to achieve multi-layer structure, multi-layer cycle and multi-objective optimization. The correlation equations for flow and heat transfer in the tube and shell sides of the heat exchanger are obtained, which are explored and verified. The results show that the heat exchanger thermodynamic modification model and the derived Entransy degeneration optimization criterion for the heat exchanger can reduce the overall useful energy loss by 11.2 % similar to 15.2 %. When the minimum N-gHE is taken as the optimization criterion, the NgHE is reduced by 13.6 % compared to the PEC and by 12.2 % compared to the Fc.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Experimental Investigation on Heat Transfer and Pressure Drop in Double Helically Coiled Tube Heat Exchanger with MWCNT/Water Nanofluid
    Chandrasekar, M.
    Kumar, P. C. Mukesh
    JOURNAL OF APPLIED FLUID MECHANICS, 2018, 11 : 23 - 29
  • [42] Experimental study of mixed convection heat transfer in vertical helically coiled tube heat exchangers
    Ghorbani, N.
    Taherian, H.
    Gorji, M.
    Mirgolbabaei, H.
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2010, 34 (07) : 900 - 905
  • [43] Numerical study of the characteristic influence of the helically coiled tube on the heat transfer of carbon dioxide
    Mei, Yang
    APPLIED THERMAL ENGINEERING, 2016, 102 : 882 - 896
  • [44] Multi-parameter optimization of shell-and-tube heat exchanger with helical baffles based on entransy theory
    Wen, Jian
    Gu, Xin
    Wang, Mengmeng
    Liu, Yuce
    Wang, Simin
    APPLIED THERMAL ENGINEERING, 2018, 130 : 804 - 813
  • [45] Heat transfer characteristics of a new helically coiled crimped spiral finned tube heat exchanger
    Srisawad, Kwanchanok
    Wongwises, Somchai
    HEAT AND MASS TRANSFER, 2009, 45 (04) : 381 - 391
  • [46] Numerical investigation of heat transfer intensification in shell and helically coiled finned tube heat exchangers and design optimization
    Alimoradi, Ashkan
    Olfati, Mohammad
    Maghareh, Meysam
    CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2017, 121 : 125 - 143
  • [47] Heat transfer characteristics of a new helically coiled crimped spiral finned tube heat exchanger
    Kwanchanok Srisawad
    Somchai Wongwises
    Heat and Mass Transfer, 2009, 45 : 381 - 391
  • [48] Experimental study on the thermal performance of multi-row helically coiled tube heat exchanger for surface water-source heat pump
    Zhou, Chaohui
    Ni, Long
    Ke, Ying
    Yao, Yang
    APPLIED THERMAL ENGINEERING, 2019, 149 : 1274 - 1286
  • [49] An experimental investigation of natural convection heat transfer from a helically coiled heat exchanger
    Izadpanah, Ehsan
    Zarei, Ahmad
    Akhavan, Saeed
    Rabiee, Marzie Babaie
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2018, 93 : 38 - 46
  • [50] Thermo-hydraulic characteristics of the helically coiled tube and the condensate heat exchanger for SMART
    Chung, Young-Jong
    Kim, Hyung Jun
    Chung, Bub-Dong
    Lee, Won Jae
    Kim, Moo-Hwan
    ANNALS OF NUCLEAR ENERGY, 2013, 55 : 49 - 54