Data-driven optimisation of process parameters for reducing developed surface area ratio in laser powder bed fusion

被引:0
|
作者
Qin, Yuchu [1 ]
Shi, Peizhi [2 ]
Lou, Shan [1 ]
See, Tian Long [3 ]
Jamal, Mikdam [3 ]
Zeng, Wenhan [1 ]
Blunt, Liam [1 ]
Scott, Paul J. [1 ]
Jiang, Xiangqian [1 ]
机构
[1] Univ Huddersfield, EPSRC Future Adv Metrol Hub Sustainable Mfg, Huddersfield HD1 3DH, England
[2] Univ Leeds, Leeds Univ, Ctr Decis Res, Business Sch, Leeds LS2 9JT, England
[3] Mfg Technol Ctr MTC, Ansty Pk, Coventry CV7 9JU, England
基金
英国工程与自然科学研究理事会; 中国国家自然科学基金;
关键词
Process parameter optimisation; Surface quality; Surface development ratio; Laser powder bed fusion; Machine learning; Optimisation algorithm; ROUGHNESS; PREDICTION; PARTS;
D O I
10.1007/s00170-025-15038-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Optimising process parameters is a key category of approaches to improve the surface quality of laser powder bed fusion parts. So far, many optimisation methods have been presented, which provide effective ideas and approaches for improving surface quality. However, these methods all focus on the improvement of Ra\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_a$$\end{document}, Sa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_a$$\end{document}, Rsk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{sk}$$\end{document}, or R Delta q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\Delta q}$$\end{document}. These parameters are sufficient for most applications. They are however not suitable for applications where functional performance is linked with surface area. To quantify the quality of surfaces for these applications, the developed surface area ratio (Sdr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{dr}$$\end{document}) is a more appropriate parameter as it can be used to quantitatively express the exposed functional surface area. In this paper, a data-driven method for optimising five process parameters, namely layer thickness, laser power, hatch spacing, point distance, and exposure time, to reduce the developed surface area ratio of laser powder bed fusion parts is proposed. Firstly, experiments are designed, and actual build and measurement experiments are conducted to acquire a fixed amount of data. A Bayesian ridge regression model for predicting a developed surface area ratio from the five process parameters is then trained and tested and compared with several other machine learning models using the acquired data. After that, optimisation of the five process parameters to reduce developed surface area ratio is carried out using the genetic algorithm, in which the objective function values (developed surface area ratios) are predicted using the established Bayesian ridge regression model. Finally, an additional actual build and measurement experiment is conducted to validate the optimisation. The testing results show that the Bayesian ridge regression model can obtain an average R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>2$$\end{document} score of 0.77 and an average mean absolute error of 8.48 on the testing dataset. The validation results suggest that the developed surface area ratios generated by the optimisation are relatively small, and on average, they are 52. 11% smaller than the developed surface area ratio under the process parameters recommended by the used laser powder bed fusion system.
引用
收藏
页码:3821 / 3831
页数:11
相关论文
共 50 条
  • [1] Optimisation of process parameters for improving surface quality in laser powder bed fusion
    Qin, Yuchu
    Lou, Shan
    Shi, Peizhi
    Qi, Qunfen
    Zeng, Wenhan
    Scott, Paul J.
    Jiang, Xiangqian
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2023, 130 (5-6): : 2833 - 2845
  • [2] Optimisation of process parameters for improving surface quality in laser powder bed fusion
    Yuchu Qin
    Shan Lou
    Peizhi Shi
    Qunfen Qi
    Wenhan Zeng
    Paul J. Scott
    Xiangqian Jiang
    The International Journal of Advanced Manufacturing Technology, 2024, 130 : 2833 - 2845
  • [3] Deriving Data-Driven Models That Relate Deterministic Surface Topography Parameters of As-Built Inconel 718 Surfaces to Laser Powder Bed Fusion Process Parameters
    Detwiler, Sean
    Raeymaekers, Bart
    JOURNAL OF TRIBOLOGY-TRANSACTIONS OF THE ASME, 2022, 144 (12):
  • [4] Data-driven prediction of inter-layer process condition variations in laser powder bed fusion
    Kozjek, Dominik
    Porter, Conor
    Carter III, Fred M.
    Mogonye, Jon-Erik
    Cao, Jian
    ADDITIVE MANUFACTURING, 2024, 88
  • [5] Data-driven surrogate modelling of residual stresses in Laser Powder-Bed Fusion
    Lestandi, L.
    Wong, J. C.
    Dong, G. Y.
    Kuehsamy, S. J.
    Mikula, J.
    Vastola, G.
    Kizhakkinan, U.
    Ford, C. S.
    Rosen, D. W.
    Dao, M. H.
    Jhon, M. H.
    INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING, 2024, 37 (06) : 685 - 707
  • [6] Data-driven distortion compensation for laser powder bed fusion process using Gaussian process regression and inherent strain method
    Dong, Wen
    Paudel, Basil J.
    Deng, Hao
    Garner, Shane
    To, Albert C.
    MATERIALS & DESIGN, 2024, 243
  • [7] Probabilistic Data-Driven Modeling of a Melt Pool in Laser Powder Bed Fusion Additive Manufacturing
    Fang, Qihang
    Xiong, Gang
    Zhao, Meihua
    Tamir, Tariku Sinshaw
    Shen, Zhen
    Yan, Chao-Bo
    Wang, Fei-Yue
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2024,
  • [8] Optimisation of downskin parameters to produce metallic parts via laser powder bed fusion process: an overview
    Vittorio Viale
    John Stavridis
    Alessandro Salmi
    Federica Bondioli
    Abdollah Saboori
    The International Journal of Advanced Manufacturing Technology, 2022, 123 : 2159 - 2182
  • [9] Optimisation of downskin parameters to produce metallic parts via laser powder bed fusion process: an overview
    Viale, Vittorio
    Stavridis, John
    Salmi, Alessandro
    Bondioli, Federica
    Saboori, Abdollah
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 123 (7-8): : 2159 - 2182
  • [10] Laser Powder Bed Fusion of Multilayer Thin-walled Structures Based on Data-driven Model
    Lee, An-Chen
    Huang, Ruei-Yu
    Trong-Doan Nguyen
    Cheng, Chung-Wei
    Tsai, Mi-Ching
    JOURNAL OF LASER MICRO NANOENGINEERING, 2020, 15 (01): : 38 - 44