Wildfire assessment using machine learning algorithms in different regions

被引:0
|
作者
Moghim, Sanaz [1 ]
Mehrabi, Majid [1 ]
机构
[1] Sharif Univ Technol, Dept Civil Engn, Azadi Ave, Tehran, Iran
来源
FIRE ECOLOGY | 2024年 / 20卷 / 01期
基金
美国海洋和大气管理局;
关键词
Wildfire; Fire regime; Machine learning; Random forest; Logistic regression; Fire Susceptibility map; Conservation ecology; SUPPORT VECTOR MACHINE; FOREST-FIRE DANGER; LOGISTIC-REGRESSION; SPATIAL-PATTERN; CLIMATE-CHANGE; BOREAL FOREST; SUSCEPTIBILITY; CANADA; PREDICTION; PROVINCE;
D O I
10.1186/s42408-024-00335-2
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
BackgroundClimate change and human activities are two main forces that affect the intensity, duration, and frequency of wildfires, which can lead to risks and hazards to the ecosystems. This study uses machine learning (ML) as an effective tool for predicting wildfires using historical data and influential variables. The performance of two machine learning algorithms, including logistic regression (LR) and random forest (RF), to construct wildfire susceptibility maps is evaluated in regions with different physical features (Okanogan region in the US and Jam & eacute;sie region in Canada). The models' inputs are eleven physically related variables to output wildfire probabilities.ResultsResults indicate that the most important variables in both areas are land cover, temperature, wind, elevation, precipitation, and normalized vegetation difference index. In addition, results reveal that both models have temporal and spatial generalization capability to predict annual wildfire probability at different times and locations. Generally, the RF outperforms the LR model in almost all cases. The outputs of the models provide wildfire susceptibility maps with different levels of severity (from very high to very low). Results highlight the areas that are more vulnerable to fire. The developed models and analysis are valuable for emergency planners and decision-makers in identifying critical regions and implementing preventive action for ecological conservation. AntecedentesEl cambio clim & aacute;tico y las actividades humanas son dos de las fuerzas principales que afectan la intensidad, duraci & oacute;n, y frecuencia de los incendios, lo que puede conducir a riesgos e incertidumbres en los ecosistemas. Este estudio us & oacute; la t & eacute;cnica de aprendizaje autom & aacute;tico (machine learning) como una herramienta efectiva para predecir incendios de vegetaci & oacute;n usando datos hist & oacute;ricos y variables influyentes. La performance de dos algoritmos del aprendizaje autom & aacute;tico, incluyendo regresiones log & iacute;sticas (LR) y bosques al azar (Random Forest, RF), para construir mapas de susceptibilidad a los incendios, fue evaluado en regiones con diferentes caracter & iacute;sticas f & iacute;sicas (la regi & oacute;n de Okanogan en los EEUU y la de Jam & eacute;sie en Canad & aacute;). Los inputs del modelo fueron once variables f & iacute;sicamente relacionadas y cuyos resultados fueron las probabilidades de incendios.ResultadosLos resultados indican que las variables m & aacute;s importantes en esas dos & aacute;reas son la cobertura vegetal, la temperatura, el viento, la elevaci & oacute;n, la precipitaci & oacute;n, y el NDVI (Indice Normalizado de Vegetaci & oacute;n). Adicionalmente, los resultados revelan que ambos modelos tienen la capacidad de generar espacial y temporalmente la predicci & oacute;n de la probabilidad anual de la ocurrencia de incendios en tiempos y ubicaciones diferentes. Generalmente, el RF excede al modelo LR casi todos los casos. Como resultado, el modelo provee de mapas de susceptibilidad con diferentes niveles de severidad (desde muy altos a muy bajos). Los resultados tambi & eacute;n resaltan las & aacute;reas que son m & aacute;s vulnerables al fuego. Los modelos desarrollados y el an & aacute;lisis son muy valiosos para los que planifican las emergencias y, para los decisores, para identificar regiones cr & iacute;ticas e implementar acciones preventivas para la conservaci & oacute;n ecol & oacute;gica.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Landslide and Wildfire Susceptibility Assessment in Southeast Asia Using Ensemble Machine Learning Methods
    He, Qian
    Jiang, Ziyu
    Wang, Ming
    Liu, Kai
    REMOTE SENSING, 2021, 13 (08)
  • [22] Machine-Learning Applications in Geosciences: Comparison of Different Algorithms and Vegetation Classes' Importance Ranking in Wildfire Susceptibility
    Trucchia, Andrea
    Izadgoshasb, Hamed
    Isnardi, Sara
    Fiorucci, Paolo
    Tonini, Marj
    GEOSCIENCES, 2022, 12 (11)
  • [23] Wildfire Time Estimation using a Machine Learning Algorithms Interaction Mechanism for Endemic Tree Species Recognition
    Velasquez, Washington
    Sanchez-Guzman, Guillermo
    Jijon-Veliz, Freddy
    Alvarez-Alvarado, Manuel S.
    2023 IEEE 13TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE, CCWC, 2023, : 729 - 733
  • [24] Prediction of breast cancer using machine learning algorithms on different datasets
    Yavuz, Omer Cagri
    Calp, M. Hanefi
    Erkengel, Hazel Ceren
    INGENIERIA SOLIDARIA, 2023, 19 (01):
  • [25] Analysis of Flight Delay Data Using Different Machine Learning Algorithms
    Lincy, S. S. Blessy Trencia
    Al Ali, Hannah
    Majid, Ahmad Abdulla Abdulaziz Mohd
    Alhammadi, Omeer Arif Abdelbaqi Abdalla
    Aljassmy, Aysha Momen Yousuf Mohammed
    Mukandavire, Zindoga
    2022 NEW TRENDS IN CIVIL AVIATION (NTCA), 2022, : 57 - 62
  • [26] Solar Chatbot and Energy Prediction using different Machine Learning Algorithms
    Patni, Aditya
    Prabhu, Anuj
    Singh, Shubham
    Sankhe, Smita
    PROCEEDINGS OF THE 2021 FIFTH INTERNATIONAL CONFERENCE ON I-SMAC (IOT IN SOCIAL, MOBILE, ANALYTICS AND CLOUD) (I-SMAC 2021), 2021, : 1265 - 1273
  • [27] LANDSLIDE ASSESSMENT OF THE STARCA BASIN (CROATIA) USING MACHINE LEARNING ALGORITHMS
    Maajanovic, Milos
    Kovacevic, Milos
    Bajat, Branislav
    Mihalic, Snjezana
    Abolmasov, Biljana
    ACTA GEOTECHNICA SLOVENICA, 2011, 8 (02): : 45 - 55
  • [28] Assessment of Vehicle Handling Performance of Drivers Using Machine Learning Algorithms
    Saravanakumar, D.
    Sakthivel, G.
    Jegadeeshwaran, R.
    Pathi, J. Lakshmi
    Kumar, M. Muthu
    Muthuramalingam, T.
    IEEE ACCESS, 2022, 10 : 132288 - 132297
  • [29] Assessment of the future environmental carrying capacity using machine learning algorithms
    Morshed, Syed Riad
    Esraz-Ul-Zannat, Md.
    Fattah, Md Abdul
    Saroar, Mustafa
    ECOLOGICAL INDICATORS, 2024, 158
  • [30] The Assessment of the Quality of Sugar using Electronic Tongue and Machine Learning Algorithms
    Sakata, Tiemi C.
    Faceli, Katti
    Almeida, Tiago A.
    Riul Junior, Antonio
    Steluti, Wanessa M. D. M. F.
    2012 11TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2012), VOL 1, 2012, : 538 - 541