Phage parasites targeting phage homologous recombinases provide antiviral immunity

被引:0
|
作者
Debiasi-Anders, Gianluca [1 ,2 ]
Qiao, Cuncun [1 ,2 ]
Salim, Amrita [1 ,2 ]
Li, Na [1 ,2 ]
Mir-Sanchis, Ignacio [1 ,2 ,3 ]
机构
[1] Umea Univ, Dept Med Biochem & Biophys, Umea, Sweden
[2] Wallenberg Ctr Mol Med, Umea, Sweden
[3] Inst Bioengn Catalonia IBEC, Barcelona Inst Sci & Technol BIST, Baldiri I Reixac 10-12, Barcelona, Spain
关键词
ESCHERICHIA-COLI RECA; PATHOGENICITY ISLAND INTERFERENCE; CRYSTAL-STRUCTURE; SOS-RESPONSE; RAD52; PROTEIN; INHIBITION; GENE; MECHANISM; BACTERIA;
D O I
10.1038/s41467-025-57156-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Bacteria often carry multiple genes encoding anti-phage defense systems, clustered in defense islands and phage satellites. Various unrelated anti-phage defense systems target phage-encoded homologous recombinases (HRs) through unclear mechanisms. Here, we show that the phage satellite SaPI2, which does not encode orthodox anti-phage defense systems, provides antiviral immunity mediated by Stl2, the SaPI2-encoded transcriptional repressor. Stl2 targets and inhibits phage-encoded HRs, including Sak and Sak4, two HRs from the Rad52-like and Rad51-like superfamilies. Remarkably, apo Stl2 forms a collar of dimers oligomerizing as closed rings and as filaments, mimicking the quaternary structure of its targets. Stl2 decorates both Sak rings and Sak4 filaments. The oligomerization of Stl2 as a collar of dimers is necessary for its inhibitory activity both in vitro and in vivo. Our results shed light on the mechanisms underlying antiviral immunity against phages carrying divergent HRs.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] DELAYED ABOLISHMENT OF IMMUNITY OF PHAGE LAMBDA BY ULTRAVIOLET IRRADIATION
    OGAWA, T
    TOMIZAWA, J
    JAPANESE JOURNAL OF GENETICS, 1965, 40 (5-6): : 411 - &
  • [42] Fighting the Wrong Enemy: Antibacteriophage Immunity in Phage Therapy
    Molleston, Jerome M.
    Holtz, Lori R.
    JOURNAL OF INFECTIOUS DISEASES, 2023, 227 (03): : 309 - 310
  • [43] Phage engineering to overcome bacterial Tmn immunity in Dhillonvirus
    Yamashita, Wakana
    Chihara, Kotaro
    Azam, Aa Haeruman
    Kondo, Kohei
    Ojima, Shinjiro
    Tamura, Azumi
    Imanaka, Matthew
    Nobrega, Franklin L.
    Takahashi, Yoshimasa
    Watashi, Koichi
    Tsuneda, Satoshi
    Kiga, Kotaro
    COMMUNICATIONS BIOLOGY, 2025, 8 (01)
  • [44] MOLECULAR CLONING OF IMMUNITY GENE OF PHAGE-MU
    ZIPSER, D
    MOSES, P
    KAHMANN, R
    KAMP, D
    GENE, 1977, 2 (5-6) : 263 - 271
  • [45] Phage Display of Combinatorial Peptide Libraries: Application to Antiviral Research
    Castel, Guillaume
    Chteoui, Mohamed
    Heyd, Bernadette
    Tordo, Noel
    MOLECULES, 2011, 16 (05) : 3499 - 3518
  • [46] Antiviral innate immunity targeting RNA
    Takeuchi, Osamu
    EUROPEAN JOURNAL OF IMMUNOLOGY, 2021, 51 : 18 - 18
  • [47] Evolutionary Sweeps of Subviral Parasites and Their Phage Host Bring Unique Parasite Variants and Disappearance of a Phage CRISPR-Cas System
    Angermeyer, Angus
    Hays, Stephanie G.
    Nguyen, Maria H. T.
    Johura, Fatema-Tuz
    Sultana, Marzia
    Alam, Munirul
    Seed, Kimberley D.
    MBIO, 2022, 13 (01): : e0308821
  • [48] Targeting mammalian organelles with internalizing phage (iPhage) libraries
    Roberto Rangel
    Andrey S Dobroff
    Liliana Guzman-Rojas
    Carolina C Salmeron
    Juri G Gelovani
    Richard L Sidman
    Renata Pasqualini
    Wadih Arap
    Nature Protocols, 2013, 8 : 1916 - 1939
  • [49] Directly radiolabeled phage with spleen-targeting specificity
    Sun Liyan
    Liang Kun
    Wang Xiangyun
    Chu Taiwei
    NUCLEAR SCIENCE AND TECHNIQUES, 2011, 22 (04) : 217 - 223
  • [50] Advances in Phage Therapy: Targeting the Burkholderia cepacia Complex
    Lauman, Philip
    Dennis, Jonathan J.
    VIRUSES-BASEL, 2021, 13 (07):