Phage parasites targeting phage homologous recombinases provide antiviral immunity

被引:0
|
作者
Debiasi-Anders, Gianluca [1 ,2 ]
Qiao, Cuncun [1 ,2 ]
Salim, Amrita [1 ,2 ]
Li, Na [1 ,2 ]
Mir-Sanchis, Ignacio [1 ,2 ,3 ]
机构
[1] Umea Univ, Dept Med Biochem & Biophys, Umea, Sweden
[2] Wallenberg Ctr Mol Med, Umea, Sweden
[3] Inst Bioengn Catalonia IBEC, Barcelona Inst Sci & Technol BIST, Baldiri I Reixac 10-12, Barcelona, Spain
关键词
ESCHERICHIA-COLI RECA; PATHOGENICITY ISLAND INTERFERENCE; CRYSTAL-STRUCTURE; SOS-RESPONSE; RAD52; PROTEIN; INHIBITION; GENE; MECHANISM; BACTERIA;
D O I
10.1038/s41467-025-57156-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Bacteria often carry multiple genes encoding anti-phage defense systems, clustered in defense islands and phage satellites. Various unrelated anti-phage defense systems target phage-encoded homologous recombinases (HRs) through unclear mechanisms. Here, we show that the phage satellite SaPI2, which does not encode orthodox anti-phage defense systems, provides antiviral immunity mediated by Stl2, the SaPI2-encoded transcriptional repressor. Stl2 targets and inhibits phage-encoded HRs, including Sak and Sak4, two HRs from the Rad52-like and Rad51-like superfamilies. Remarkably, apo Stl2 forms a collar of dimers oligomerizing as closed rings and as filaments, mimicking the quaternary structure of its targets. Stl2 decorates both Sak rings and Sak4 filaments. The oligomerization of Stl2 as a collar of dimers is necessary for its inhibitory activity both in vitro and in vivo. Our results shed light on the mechanisms underlying antiviral immunity against phages carrying divergent HRs.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Phage Recombinases and Their Applications
    Murphy, Kenan C.
    ADVANCES IN VIRUS RESEARCH, VOL 83: BACTERIOPHAGES, PT B, 2012, 83 : 367 - 414
  • [2] Evasion of antiviral bacterial immunity by phage tRNAs
    Azam, Aa Haeruman
    Kondo, Kohei
    Chihara, Kotaro
    Nakamura, Tomohiro
    Ojima, Shinjiro
    Nie, Wenhan
    Tamura, Azumi
    Yamashita, Wakana
    Sugawara, Yo
    Sugai, Motoyuki
    Cui, Longzhu
    Takahashi, Yoshimasa
    Watashi, Koichi
    Kiga, Kotaro
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [3] IMMUNITY OF LAMBDA PHAGE
    TOMIZAWA, J
    JAPANESE JOURNAL OF GENETICS, 1965, 40 (5-6): : 423 - &
  • [4] A chimeric nuclease substitutes a phage CRISPR-Cas system to provide sequence-specific immunity against subviral parasites
    Barth, Zachary K.
    Nguyen, Maria H. T.
    Seed, Kimberley D.
    ELIFE, 2021, 10
  • [5] COMPARISON OF DELETIONS AND OF HOMOLOGOUS REGIONS OF LAMBDA PHAGE AND PHI 80 PHAGE
    HRADECNA, Z
    FOLIA MICROBIOLOGICA, 1973, 18 (02) : 187 - 187
  • [6] Filamentous phage integration requires the host recombinases XerC and XerD
    Huber, KE
    Waldor, MK
    NATURE, 2002, 417 (6889) : 656 - 659
  • [7] Filamentous phage integration requires the host recombinases XerC and XerD
    Kathryn E. Huber
    Matthew K. Waldor
    Nature, 2002, 417 : 656 - 659
  • [8] Comparison of phage-derived recombinases for genetic manipulation of Pseudomonas species
    Kalb, Madison J.
    Grenfell, Andrew W.
    Jain, Abhiney
    Fenske-Newbart, Jane
    Gralnick, Jeffrey A.
    MICROBIOLOGY SPECTRUM, 2023, : e0317623
  • [9] PHAGE INDUCTION IN SCREENING OF ANTIVIRAL ANTIBIOTICS
    GONCHARS.TY
    SINGAL, EM
    FADEEVA, NP
    ANTIBIOTIKI, 1972, 17 (01): : 42 - &
  • [10] Phage-encoded Serine Integrases and Other Large Serine Recombinases
    Smith, Margaret C. M.
    MICROBIOLOGY SPECTRUM, 2015, 3 (04):