Application of machine learning and deep learning techniques on reverse vaccinology – a systematic literature review

被引:0
|
作者
Hany Alashwal [1 ]
Nishi Palakkal Kochunni [1 ]
Kadhim Hayawi [2 ]
机构
[1] United Arab Emirates University,Big Data Analytics Center, College of Information Technology
[2] Zayed University,College of Interdisciplinary Studies, Computational Systems
关键词
Reverse vaccinology; Vaccine candidate prediction; Deep learning; Machine learning;
D O I
10.1007/s00500-025-10480-8
中图分类号
学科分类号
摘要
Reverse vaccinology (RV) is recognized as a productive method of vaccine discovery since it may be used to create vaccines for a variety of infectious pathogens. With the potential for machine learning (ML) algorithms to enable quick and precise predictions of vaccine candidates against new infections, RV is of particular relevance. Despite the fact that ML has been used successfully in the past, Deep learning (DL) model-based RV approaches have not been used widely. DL techniques are known to provide more complicated models and better performance for AI applications. This paper supports and reviews the roles of machine learning and Deep Learning in predicting potential vaccine candidates and discovery processes. Our study involved a systematic evaluation of selected publications, identified through a combination of prior knowledge and keyword searches across freely accessible databases. A meticulous screening process, considering contextual relevance, abstract quality, methodology, and full-text content, was employed. The literature review, conducted with a rigorous methodology, encompasses a thorough analysis of articles focusing on machine learning and deep learning techniques.
引用
收藏
页码:391 / 403
页数:12
相关论文
共 50 条
  • [31] Video Processing Using Deep Learning Techniques: A Systematic Literature Review
    Sharma, Vijeta
    Gupta, Manjari
    Kumar, Ajai
    Mishra, Deepti
    IEEE ACCESS, 2021, 9 : 139489 - 139507
  • [32] Analysis of Deep Learning Techniques for Dental Informatics: A Systematic Literature Review
    AbuSalim, Samah
    Zakaria, Nordin
    Islam, Md Rafiqul
    Kumar, Ganesh
    Mokhtar, Norehan
    Abdulkadir, Said Jadid
    HEALTHCARE, 2022, 10 (10)
  • [33] A systematic literature review for the prediction of anticancer drug response using various machine-learning and deep-learning techniques
    Singh, Davinder Paul
    Kaushik, Baijnath
    CHEMICAL BIOLOGY & DRUG DESIGN, 2023, 101 (01) : 175 - 194
  • [34] Supervised Machine Learning and Deep Learning Techniques for Epileptic Seizure Recognition Using EEG Signals-A Systematic Literature Review
    Nafea, Mohamed Sami
    Ismail, Zool Hilmi
    BIOENGINEERING-BASEL, 2022, 9 (12):
  • [35] Machine learning and deep learning techniques to support clinical diagnosis of arboviral diseases: A systematic review
    da Silva Neto, Sebastiao Rogerio
    Oliveira, Thomas Tabosa
    Teixeira, Igor Vitor
    Aguiar de Oliveira, Samuel Benjamin
    Sampaio, Vanderson Souza
    Lynn, Theo
    Endo, Patricia Takako
    PLOS NEGLECTED TROPICAL DISEASES, 2022, 16 (01):
  • [36] A systematic review on intracranial aneurysm and hemorrhage detection using machine learning and deep learning techniques
    Ahmed, S. Nafees
    Prakasam, P.
    PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2023, 183 : 1 - 16
  • [37] OPPORTUNITIES AND CHALLENGES OF MACHINE LEARNING AND DEEP LEARNING TECHNIQUES IN CARDIOVASCULAR DISEASE PREDICTION: A SYSTEMATIC REVIEW
    Omkari, D. Yaso
    Shinde, Snehal B. B.
    JOURNAL OF BIOLOGICAL SYSTEMS, 2023, 31 (02) : 309 - 344
  • [38] A systematic review on machine learning and deep learning techniques in the effective diagnosis of Alzheimer's disease
    Arya, Akhilesh Deep
    Verma, Sourabh Singh
    Chakarabarti, Prasun
    Chakrabarti, Tulika
    Elngar, Ahmed A.
    Kamali, Ali-Mohammad
    Nami, Mohammad
    BRAIN INFORMATICS, 2023, 10 (01)
  • [39] COVID-19 Detection Empowered with Machine Learning and Deep Learning Techniques: A Systematic Review
    Rehman, Amir
    Iqbal, Muhammad Azhar
    Xing, Huanlai
    Ahmed, Irfan
    APPLIED SCIENCES-BASEL, 2021, 11 (08):
  • [40] Application of Machine Learning Techniques in Identification of Fungal Species: A Literature Review
    Saryoko, Andi
    Nurmalia, Lia
    Fitri, Evita
    Nugraha, Siti Nurhasanah
    Saputra, Elin Panca
    Pujiastuti, Endang
    Proceeding - 2024 International Conference on Information Technology Research and Innovation, ICITRI 2024, 2024, : 317 - 322