Application of machine learning and deep learning techniques on reverse vaccinology – a systematic literature review

被引:0
|
作者
Hany Alashwal [1 ]
Nishi Palakkal Kochunni [1 ]
Kadhim Hayawi [2 ]
机构
[1] United Arab Emirates University,Big Data Analytics Center, College of Information Technology
[2] Zayed University,College of Interdisciplinary Studies, Computational Systems
关键词
Reverse vaccinology; Vaccine candidate prediction; Deep learning; Machine learning;
D O I
10.1007/s00500-025-10480-8
中图分类号
学科分类号
摘要
Reverse vaccinology (RV) is recognized as a productive method of vaccine discovery since it may be used to create vaccines for a variety of infectious pathogens. With the potential for machine learning (ML) algorithms to enable quick and precise predictions of vaccine candidates against new infections, RV is of particular relevance. Despite the fact that ML has been used successfully in the past, Deep learning (DL) model-based RV approaches have not been used widely. DL techniques are known to provide more complicated models and better performance for AI applications. This paper supports and reviews the roles of machine learning and Deep Learning in predicting potential vaccine candidates and discovery processes. Our study involved a systematic evaluation of selected publications, identified through a combination of prior knowledge and keyword searches across freely accessible databases. A meticulous screening process, considering contextual relevance, abstract quality, methodology, and full-text content, was employed. The literature review, conducted with a rigorous methodology, encompasses a thorough analysis of articles focusing on machine learning and deep learning techniques.
引用
收藏
页码:391 / 403
页数:12
相关论文
共 50 条
  • [1] Systematic literature review: Machine learning techniques (machine learning)
    Alfaro, Anderson Damian Jimenez
    Ospina, Jose Vicente Diaz
    CUADERNO ACTIVA, 2021, (13): : 113 - 121
  • [2] Application of machine learning techniques for driving errors analysis: systematic literature review
    Ameksa, Mohammed
    Mousannif, Hajar
    Al Moatassime, Hassan
    Elamrani Abou Elassad, Zouhair
    INTERNATIONAL JOURNAL OF CRASHWORTHINESS, 2024, 29 (05) : 785 - 793
  • [3] The application of machine learning techniques for smart irrigation systems: A systematic literature review
    Younes, Abiadi
    Abou Elassad, Zouhair Elamrani
    El Meslouhi, Othmane
    Abou Elassad, Dauha Elamrani
    Majid, Ed-dahbi Abdel
    SMART AGRICULTURAL TECHNOLOGY, 2024, 7
  • [4] The application of traditional machine learning and deep learning techniques in mammography: a review
    Gao, Ying'e
    Lin, Jingjing
    Zhou, Yuzhuo
    Lin, Rongjin
    FRONTIERS IN ONCOLOGY, 2023, 13
  • [5] A systematic review on machine learning and deep learning techniques in cancer survival prediction
    Deepa, P.
    Gunavathi, C.
    PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2022, 174 : 62 - 71
  • [6] Skin Diseases Classification with Machine Learning and Deep Learning Techniques: A Systematic Review
    Aboulmira, Amina
    Hrimech, Hamid
    Lachgar, Mohamed
    International Journal of Advanced Computer Science and Applications, 2024, 15 (10) : 1155 - 1173
  • [7] Software fault prediction using data mining, machine learning and deep learning techniques: A systematic literature review
    Batool, Iqra
    Khan, Tamim Ahmed
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 100
  • [8] A Systematic Literature Review on Machine Learning and Deep Learning Methods for Semantic Segmentation
    Sohail, Ali
    Nawaz, Naeem A. A.
    Shah, Asghar Ali
    Rasheed, Saim
    Ilyas, Sheeba
    Ehsan, Muhammad Khurram
    IEEE ACCESS, 2022, 10 : 134557 - 134570
  • [9] A Systematic Literature Review on Machine Learning and Deep Learning Methods for Semantic Segmentation
    Sohail, Ali
    Nawaz, Naeem A.
    Shah, Asghar Ali
    Rasheed, Saim
    Ilyas, Sheeba
    Ehsan, Muhammad Khurram
    IEEE Access, 2022, 10 : 134557 - 134570
  • [10] Machine Learning Techniques for Knowledge Tracing: A Systematic Literature Review
    Ramirez Luelmo, Sergio Ivan
    El Mawas, Nour
    Heutte, Jean
    CSEDU: PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED EDUCATION - VOL 1, 2021, : 60 - 70