Novel CRISPR-Cas9 iPSC knockouts for PCCA and PCCB genes: advancing propionic acidemia research

被引:0
|
作者
Garcia-Tenorio, Emilio M. [1 ,2 ]
Alvarez, Mar [1 ]
Gallego-Bonhomme, Monica
Desviat, Lourdes R. [1 ,2 ,3 ,4 ]
Richard, Eva [1 ,2 ,3 ,4 ]
机构
[1] Univ Autonoma Madrid, Ctr Biol Mol Severo Ochoa, CSIC, UAM, Madrid 28049, Spain
[2] Univ Autonoma Madrid, Inst Univ Biol Mol, Madrid, Spain
[3] ISCIII, Ctr Invest Biomed Red Enfermedades Raras CIBERER, Madrid, Spain
[4] Inst Invest Sanitaria Hosp La Paz IdiPaz, Madrid, Spain
关键词
IPSC; Disease modelling; Propionic acidemia; Isogenic controls; CRISPR-Cas9;
D O I
10.1007/s13577-025-01193-z
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Propionic acidemia (PA) is a rare autosomal recessive metabolic disorder caused by mutations in the PCCA and PCCB genes, which encode subunits of the mitochondrial enzyme propionyl-CoA carboxylase (PCC). This enzyme deficiency leads to the accumulation of toxic metabolites, resulting in severe metabolic dysfunction. To create ideal in vitro disease models of PA with isogenic controls and provide a robust platform for therapeutic research, we generated two induced pluripotent stem cell (iPSC) lines with knockout (KO) mutations in the PCCA and PCCB genes using CRISPR-Cas9 gene editing in a healthy control iPSC line. The KO iPS cells were successfully established and characterized, confirming the presence of frameshift insertions and deletions in each target gene, as well as the loss of the corresponding transcript, protein expression, and activity. Additionally, the generated iPSC lines exhibit hallmark characteristics of pluripotency, including the potential to differentiate into all three germ layers. Our PCCA and PCCB KO iPSC models provide a valuable tool for studying the molecular mechanisms underlying PA and hold potential for advancing new therapeutic approaches.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Advancing Quality Control for CRISPR-Cas9 Systems: Separation of CRISPR Components Using Ion Exchange Chromatography
    Scheel, Kyle
    Lauber, Matthew
    Ginther, Rachel C.
    MOLECULAR THERAPY, 2024, 32 (04) : 448 - 448
  • [32] Targeted Mutagenesis of Duplicated Genes in Caenorhabditis elegans Using CRISPR-Cas9
    Suhong Xu
    Zhiping Wang
    Kyung Won Kim
    Yishi Jin
    Andrew D.Chisholm
    Journal of Genetics and Genomics, 2016, 43 (02) : 103 - 106
  • [33] A CRISPR-Cas9 delivery system for in vivo screening of genes in the immune system
    Martin W. LaFleur
    Thao H. Nguyen
    Matthew A. Coxe
    Kathleen B. Yates
    Justin D. Trombley
    Sarah A. Weiss
    Flavian D. Brown
    Jacob E. Gillis
    Daniel J. Coxe
    John G. Doench
    W. Nicholas Haining
    Arlene H. Sharpe
    Nature Communications, 10
  • [34] Identification of novel regulators of cross-presentation with CRISPR-Cas9
    Theisen, D.
    Davidson, J.
    Briseno, C. G.
    Gargaro, M.
    Wang, Q.
    Lauron, E.
    Bagadia, P.
    Durai, V
    Sibley, D.
    Gillanders, W.
    Schreiber, R.
    Murphy, T.
    Murphy, K. M.
    EUROPEAN JOURNAL OF IMMUNOLOGY, 2018, 48 : 28 - 28
  • [35] A CRISPR-Cas9 delivery system for in vivo screening of genes in the immune system
    LaFleur, Martin W.
    Nguyen, Thao H.
    Coxe, Matthew A.
    Yates, Kathleen B.
    Trombley, Justin D.
    Weiss, Sarah A.
    Brown, Flavian D.
    Gillis, Jacob E.
    Coxe, Daniel J.
    Doench, John G.
    Haining, W. Nicholas
    Sharpe, Arlene H.
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [36] Targeted Mutagenesis of Duplicated Genes in Caenorhabditis elegans Using CRISPR-Cas9
    Xu, Suhong
    Wang, Zhiping
    Kim, Kyung Won
    Jin, Yishi
    Chisholm, Andrew D.
    JOURNAL OF GENETICS AND GENOMICS, 2016, 43 (02) : 103 - 106
  • [37] ADVANCING CARDIAC GENE THERAPY THROUGH EXOSOME-ENCAPSULATED CRISPR-CAS9 RIBONUCLEOPROTEINS
    Mun, D.
    Kang, J.
    Park, M.
    Yoo, G.
    Joung, B.
    CYTOTHERAPY, 2024, 26 (06) : S83 - S83
  • [38] Forward genetics using CRISPR-Cas9 in intestinal organoids identified novel colorectal tumor suppressor genes
    Takeda, Haruna
    CANCER SCIENCE, 2018, 109 : 782 - 782
  • [39] The potential of CRISPR-Cas9 prime editing for cardiovascular disease research and therapy
    Bharucha, Nike
    Arias, Ariel
    Karakikes, Ioannis
    CURRENT OPINION IN CARDIOLOGY, 2022, 37 (05) : 413 - 418
  • [40] Protocol One-step CRISPR-Cas9 protocol for the generation of plug & play conditional knockouts in Drosophila melanogaster
    Yu, Joyce J. S.
    Vincent, Jean-Paul
    McGough, Ian J.
    STAR PROTOCOLS, 2021, 2 (02):