Remarks on the non-local eigenvalue problems for the p-Laplacian

被引:0
|
作者
Tanaka, Mieko [1 ]
机构
[1] Tokyo Univ Sci, Dept Math, Kagurazaka 1-3,Shinjuku Ku, Tokyo 1628601, Japan
来源
BOUNDARY VALUE PROBLEMS | 2025年 / 2025卷 / 01期
基金
日本学术振兴会;
关键词
Sobolev-Poincare inequality; p-Laplacian; Nonlinear eigenvalue with weight; Second eigenvalue of the p-Laplacian; Nodal eigen function; ELLIPTIC-EQUATIONS; EIGENFUNCTIONS; ASYMPTOTICS; CONSTANTS;
D O I
10.1186/s13661-025-02016-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the p-Laplace eigenvalue problem -Delta(p)u =lambda w(x) u lu in 2. u=0 on partial derivative Omega. having a nonlocal term [u(q)Omega integral(q,w)a w/u/9dx > 0. The first eigenvalue is well known as the best constant of the Sobolev-Poicar & eacute; inequality. In this paper, we give the existence of the least eigenvalue mu" such that the equation has a nodal solution, We show that u coincides with the second eigenvalue in p-sublinear case (1 <q<p) provided w >= 0 a.e. in 2. In p-superlinear case (p <q<p(2)), we characterize " by the minimax value using the Rayleigh quotient.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Boundedness of the first eigenvalue of the p-Laplacian
    Matei, AM
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (07) : 2183 - 2192
  • [42] Eigenvalue Problem For Perturbated p-Laplacian
    Latifi, Mehdi
    Alimohammady, Mohsen
    THAI JOURNAL OF MATHEMATICS, 2022, 20 (01): : 35 - 54
  • [43] Eigenvalue estimate for the weighted p-Laplacian
    Wang, Lin Feng
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2012, 191 (03) : 539 - 550
  • [44] The first eigenvalue of Finsler p-Laplacian
    Yin, Song-Ting
    He, Qun
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2014, 35 : 30 - 49
  • [45] On the fundamental eigenvalue ratio of the p-Laplacian
    Fleckinger, Jacqueline
    Harrell, Evans M., II
    de Thelin, Francois
    BULLETIN DES SCIENCES MATHEMATIQUES, 2007, 131 (07): : 613 - 619
  • [46] Principal eigenvalue of the p-laplacian in RN
    Furusho, Yasuhiro
    Murata, Yuji
    Nonlinear Analysis, Theory, Methods and Applications, 1997, 30 (08): : 4749 - 4756
  • [47] Eigenvalue bounds for the signless p-Laplacian
    Borba, Elizandro Max
    Schwerdtfeger, Uwe
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (02):
  • [48] ON THE FIRST EIGENVALUE OF THE NORMALIZED p-LAPLACIAN
    Crasta, Graziano
    Fragala, Ilaria
    Kawohl, Bernd
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (02) : 577 - 590
  • [49] Estimates of the principal eigenvalue of the p-Laplacian
    Benedikt, Jiri
    Drabek, Pavel
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 393 (01) : 311 - 315
  • [50] Principal eigenvalue of the p-Laplacian in RN
    Furusho, Y
    Murata, Y
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (08) : 4749 - 4756