Remarks on the non-local eigenvalue problems for the p-Laplacian
被引:0
|
作者:
Tanaka, Mieko
论文数: 0引用数: 0
h-index: 0
机构:
Tokyo Univ Sci, Dept Math, Kagurazaka 1-3,Shinjuku Ku, Tokyo 1628601, JapanTokyo Univ Sci, Dept Math, Kagurazaka 1-3,Shinjuku Ku, Tokyo 1628601, Japan
Tanaka, Mieko
[1
]
机构:
[1] Tokyo Univ Sci, Dept Math, Kagurazaka 1-3,Shinjuku Ku, Tokyo 1628601, Japan
Sobolev-Poincare inequality;
p-Laplacian;
Nonlinear eigenvalue with weight;
Second eigenvalue of the p-Laplacian;
Nodal eigen function;
ELLIPTIC-EQUATIONS;
EIGENFUNCTIONS;
ASYMPTOTICS;
CONSTANTS;
D O I:
10.1186/s13661-025-02016-8
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We consider the p-Laplace eigenvalue problem -Delta(p)u =lambda w(x) u lu in 2. u=0 on partial derivative Omega. having a nonlocal term [u(q)Omega integral(q,w)a w/u/9dx > 0. The first eigenvalue is well known as the best constant of the Sobolev-Poicar & eacute; inequality. In this paper, we give the existence of the least eigenvalue mu" such that the equation has a nodal solution, We show that u coincides with the second eigenvalue in p-sublinear case (1 <q<p) provided w >= 0 a.e. in 2. In p-superlinear case (p <q<p(2)), we characterize " by the minimax value using the Rayleigh quotient.
机构:
Chongqing Technol & Business Univ, Sch Math & Stat, Chongqing 400067, Peoples R ChinaChongqing Technol & Business Univ, Sch Math & Stat, Chongqing 400067, Peoples R China