Predictions of H-mode access and edge pedestal instability in the EHL-2 spherical torus

被引:0
|
作者
王嵎民 [1 ,2 ]
李凯 [3 ]
黄卓 [4 ]
刘一良 [5 ]
戴舒宇 [5 ]
张洁 [6 ]
黄艳清 [7 ]
顾翔 [1 ,2 ]
赵毅航 [1 ,2 ]
徐帅 [8 ]
王二辉 [8 ]
郭栋 [1 ,2 ]
石跃江 [1 ,2 ]
谢华生 [1 ,2 ]
梁云峰 [1 ,8 ]
刘敏胜 [1 ,2 ]
the EHL Team [2 ,1 ,2 ]
机构
[1] Hebei Key Laboratory of Compact Fusion
[2] ENN Science and Technology Development Co, Ltd
[3] Centre for Theoretical and Computational Physics, College of Physics, Qingdao University
[4] College of Computer Science, South-Central Minzu University
[5] Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education),School of Physics, Dalian University of Technology
[6] Department of Plasma Physics and Fusion Engineering, University of Science and Technology of China
[7] College of Physics and Electronic Engineering, Hengyang Normal University
[8] Forschungszentrum Jülich GmbH, Institute of Fusion Energy and Nuclear Waste
关键词
D O I
暂无
中图分类号
TL631.24 [];
学科分类号
摘要
The EHL-2 spherical torus is designed to demonstrate proton-boron(p-11B) fusion within a compact spherical tokamak.Its planned heating system includes a negative ion-based neutral beam injection(N-NBI),two positive ion-based NBI systems(P-NBI),electron cyclotron resonance heating(ECRH),ion cyclotron resonance heating(ICRH),and high harmonic fast wave(HHFW),with a total power output of 31 MW.According to scaling law estimates,the device is capable of achieving H-mode operation.The plasma density,ne,min,at the minimum LH power threshold,PLH,is estimated to be 4.4× 1019 m-3.The pedestal parameters were calculated using the REPED model.Assuming B as the primary impurity ion,the predicted pedestal width and height are lower compared to the typical case with carbon impurities.The pedestal collisionality for EHL-2 is estimated to range between 0.06 and 0.17,indicating the potential for significant energy loss due to edge localized modes(ELMs).The heat flux on the divertor plate has been calculated using the JOREK code.The peak heat fluxes during ELM bursts are approximately 31.0 MW/m2 at the lower inboard target and 39.5 MW/m2 at the lower outboard target.A preliminary design of the resonant magnetic perturbation(RMP) coils has been completed to both control type-Ⅰ ELMs and correct error fields.The system comprises 16coils arranged into 2×4 pairs.In ELM control mode,a 14/2 component is generated at 1.7 G/kAt,with a current of 4.9 kA required to achieve σChirikov=1 at the resonant surface,where the normalized poloidal magnetic flux is 0.85.In error field(EF) modulation mode,2/1 and 3/1components are generated at 3.5 G/kAt and 2.8 G/kAt,respectively.
引用
收藏
页码:59 / 68
页数:10
相关论文
共 50 条
  • [21] Physics design of current drive and strategy of heating system for EHL-2 spherical torus
    姜欣辰
    石跃江
    宋绍栋
    刘文军
    杨光
    宋显明
    王雪韵
    顾翔
    尹刚
    杨丹可
    赵寒月
    王嵎民
    谢华生
    李鹏敏
    王汉清
    张克卿
    韩磊
    邬潇河
    刘成岳
    吴斌
    宋城邑
    李春艳
    陈嘉康
    郑平卫
    Debabrata BANERJEE
    杨青巍
    董家齐
    梁云峰
    袁保山
    彭元凯
    张先梅
    the EHL Team
    Plasma Science and Technology, 2025, 27 (02) : 134 - 147
  • [22] Transport analysis of the EHL-2 spherical torus in a high-ion-temperature scenario
    Wang, Xueyun
    Liu, Wenjun
    Yang, Danke
    Yang, Guang
    Tan, Muzhi
    Jiang, Xinchen
    Xie, Huasheng
    Shi, Yuejiang
    Zhao, Hanyue
    Wang, Yumin
    Liang, Yunfeng
    Dong, Jiaqi
    Wu, Bin
    Liu, Chengyue
    PLASMA SCIENCE & TECHNOLOGY, 2025, 27 (02)
  • [23] Gyrokinetic analysis of core turbulent transport in high-β scenarios in the EHL-2 spherical torus
    Tan, M. Z.
    Xu, J. Q.
    Xu, C. Z.
    Wu, X. H.
    Dong, J. Q.
    Xie, H. S.
    Wang, X. Y.
    Du, H. R.
    Jiang, X. C.
    Wang, Y. M.
    Gu, X.
    Liu, B.
    Shi, Y. J.
    Liang, Y. F.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2025, 67 (02)
  • [24] Examinations on various scalings for the H-mode edge pedestal width
    Sugihara, M
    Takizuka, T
    PLASMA PHYSICS AND CONTROLLED FUSION, 2002, 44 : A299 - A305
  • [25] Global gyrokinetic simulations of the H-mode tokamak edge pedestal
    Wan, Weigang
    Parker, Scott E.
    Chen, Yang
    Groebner, Richard J.
    Yan, Zheng
    Pankin, Alexei Y.
    Kruger, Scott E.
    PHYSICS OF PLASMAS, 2013, 20 (05)
  • [26] Models for the pedestal temperature at the edge of H-mode tokamak plasmas
    Onjun, T
    Bateman, G
    Kritz, AH
    Hammett, G
    PHYSICS OF PLASMAS, 2002, 9 (12) : 5018 - 5030
  • [27] Models for H-mode pedestal temperature and predictions for future tokamak designs
    Onjun, T
    Kritz, AH
    Bateman, G
    Parail, V
    PLASMA PHYSICS, 2003, 669 : 232 - 235
  • [28] Poloidal field system and advanced divertor equilibrium configuration design of the EHL-2 spherical torus
    Gu, Xiang
    Yin, Gang
    Shi, Yuejiang
    Dong, Lili
    Wang, Yu
    Zhang, Hong
    Yang, Yuanming
    Xie, Huasheng
    Dong, Jiaqi
    Peng, Yueng-Kay Martin
    Yuan, Baoshan
    Yang, Qingwei
    Liang, Yunfeng
    Song, Xianming
    Liu, Minsheng
    PLASMA SCIENCE & TECHNOLOGY, 2025, 27 (02)
  • [29] Poloidal field system and advanced divertor equilibrium configuration design of the EHL-2 spherical torus
    顾翔
    尹刚
    石跃江
    董力立
    王宇
    臧红
    杨圆明
    谢华生
    董家齐
    彭元凯
    袁保山
    杨青巍
    梁云峰
    宋显明
    刘敏胜
    the EHL Team
    Plasma Science and Technology, 2025, 27 (02) : 125 - 133
  • [30] H-mode threshold and dynamics in the National Spherical Torus Experiment
    Bush, CE
    Bell, MG
    Bell, RE
    Boedo, J
    Fredrickson, ED
    Kaye, SM
    Kubota, S
    LeBlanc, BP
    Maingi, R
    Maqueda, RJ
    Sabbagh, SA
    Soukhanovskii, VA
    Stutman, D
    Swain, DW
    Wilgen, JB
    Zweben, SJ
    Davis, WM
    Gates, DA
    Johnson, DW
    Kaita, R
    Kugel, HW
    Lee, KC
    Mastrovito, D
    Medley, S
    Menard, JE
    Mueller, D
    Ono, M
    Paoletti, F
    Park, H
    Paul, SJ
    Peng, YKM
    Raman, R
    Roney, PG
    Roquemore, AL
    Skinner, CH
    Synakowski, EJ
    Taylor, G
    PHYSICS OF PLASMAS, 2003, 10 (05) : 1755 - 1764