Diels-Alder Reaction Mechanisms of La@C60 and Gd@C60 Studied Using Density Functional Theory

被引:0
|
作者
Cui, Cheng-Xing [1 ,2 ,3 ]
He, Jun-Ru [1 ]
Qu, Ling-Bo [4 ]
Li, Chun-Xiang [1 ,3 ]
Peng, Jia-Li [1 ,3 ]
Maseras, Feliu [2 ]
机构
[1] Henan Inst Sci & Technol, Inst Computat Chem, Sch Chem & Chem Engn, Xinxiang 453003, Henan, Peoples R China
[2] Barcelona Inst Sci & Technol, Inst Chem Res Catalonia ICIQ, CERCA, Avgda Paisos Catalans 16, Tarragona 43007, Spain
[3] Henan Acad Sci, Inst Intelligent Innovat, Zhengzhou 451162, Henan, Peoples R China
[4] Zhengzhou Univ, Sch Chem Engn, Zhengzhou 450001, Henan, Peoples R China
关键词
Embedded fullerenes; Diels-Alder; Reaction mechanism; Electric field; Distortion-interaction model; DISTORTION-INTERACTION ANALYSIS; ENDOHEDRAL METALLOFULLERENES; C-60; FULLERENES; REGIOSELECTIVITY; ACTIVATION; STABILITY; COMPLEXES; CHEMISTRY; LANTHANUM;
D O I
10.1002/chem.202402572
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Encapsulation of transition metals represents a crucial method for modifying the electronic structure and regulating the reactivity of fullerene, thereby expanding its applications. Herein, we present calculations with density functional theory methods to investigate the mechanisms of the Diels-Alder (DA) reactions of cyclopentadiene and La@C-60 or Gd@C-60 as well as their tricationic derivatives. Our findings indicate that the encapsulation of La and Gd into the C-60 cage is thermodynamically favorable. The DA reactions are favored by the presence of La and Gd, with lower barriers, though the regioselectivity, favoring 6-6 bonds in the fullerene, is not affected. The effect of external electric fields has been also considered.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] End-capping of a pseudorotaxane via Diels-Alder reaction for the construction of C60-terminated[2]rotaxanes
    Sasabe, H
    Kihara, N
    Furusho, Y
    Mizuno, K
    Ogawa, A
    Takata, T
    ORGANIC LETTERS, 2004, 6 (22) : 3957 - 3960
  • [42] First kinetic evidence for the CH/π and π/π solute-solvent interaction of C60 in the Diels-Alder reaction with cyclohexadiene
    Oshima, Takumi
    Mikie, Tsubasa
    Ikuma, Naohiko
    Yakuma, Hajime
    ORGANIC & BIOMOLECULAR CHEMISTRY, 2012, 10 (09) : 1730 - 1734
  • [43] Reaction Prediction using Density Functional Theory Calculations: A Study into the Synthesis of Safranal via Diels-Alder Reactions
    Wagner, Gabriele
    Vandati, Nadia
    Howkins, Ashley
    Cubitt, Louisa
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES, 2011, 66 (11): : 1141 - 1150
  • [44] Diels-Alder cycloaddition as an efficient tool for linking π-donors onto fullerene C60
    Hudhomme, Patrick
    COMPTES RENDUS CHIMIE, 2006, 9 (7-8) : 881 - 891
  • [45] Successive Diels-Alder Cycloadditions of Cyclopentadiene to [10]CPP⊃C60: A Computational Study
    Pareras, Gerard
    Simon, Silvia
    Poater, Albert
    Sola, Miquel
    JOURNAL OF ORGANIC CHEMISTRY, 2022, 87 (08): : 5149 - 5157
  • [46] Reversible Diels-Alder Addition to Fullerenes: A Study of Dimethylanthracene with H2@C60
    Subhani, Mahboob
    Zhou, Jinrong
    Sui, Yuguang
    Zou, Huijing
    Frunzi, Michael
    Cross, James
    Saunders, Martin
    Shuai, Cijun
    Liang, Wenjie
    Xu, Hai
    NANOMATERIALS, 2022, 12 (10)
  • [47] Diels-Alder addition to H2O@C60 an electronic and structural study
    Reveles, J. Ulises
    Govinda, K. C.
    Baruah, Tunna
    Zope, Rajendra R.
    CHEMICAL PHYSICS LETTERS, 2017, 685 : 198 - 204
  • [48] Mass spectra of some new heterocycles:: Cyclobutapyrimidines and their Diels-Alder adducts with C60
    Martinez, R
    Herrera, A
    Martin, N
    Gonzalez, B
    Illescas, B
    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 1998, 12 (09) : 568 - 570
  • [49] Fusion of C60 with cyclic amino acid and thiourea by hetero Diels-Alder reactions
    Ohno, M
    Kojima, S
    Shirakawa, Y
    Eguchi, S
    HETEROCYCLES, 1997, 46 : 49 - 52
  • [50] Reaction energetics on long-range corrected density functional theory: Diels-Alder reactions
    Singh, Raman K.
    Tsuneda, Takao
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2013, 34 (05) : 379 - 386