A broadband modeling method for range-independent underwater acoustic channels using physics-informed neural networks

被引:0
|
作者
Huang, Ziwei [1 ]
An, Liang [1 ]
Ye, Yang [1 ]
Wang, Xiaoyan [1 ]
Cao, Hongli [1 ]
Du, Yuchong [1 ]
Zhang, Meng [1 ]
机构
[1] Key Laboratory of Underwater Acoustic Signal Processing, Ministry of Education, Southeast University, Nanjing,210096, China
来源
关键词
Compendex;
D O I
10.1121/10.0034458
中图分类号
学科分类号
摘要
Boundary element method
引用
收藏
页码:3523 / 3533
相关论文
共 50 条
  • [21] Analysis on Strategies for Modeling the Wave Equation with Physics-Informed Neural Networks
    Cho, Sangin
    Choi, Woochang
    Ji, Jun
    Pyun, Sukjoon
    GEOPHYSICS AND GEOPHYSICAL EXPLORATION, 2023, 26 (03): : 114 - 125
  • [22] Physics-informed neural networks for scientific modeling: uses, implementations, and directions
    New, Alexander
    Gearhart, Andrew S.
    Darragh, Ryan A.
    Villafane-Delgado, Marisel
    ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR MULTI-DOMAIN OPERATIONS APPLICATIONS VI, 2024, 13051
  • [23] Stochastic Memristor Modeling Framework Based on Physics-Informed Neural Networks
    Kim, Kyeongmin
    Lee, Jonghwan
    Applied Sciences (Switzerland), 2024, 14 (20):
  • [24] Physics-informed neural networks for gravity field modeling of the Earth and Moon
    John Martin
    Hanspeter Schaub
    Celestial Mechanics and Dynamical Astronomy, 2022, 134
  • [25] A Survey of Bayesian Calibration and Physics-informed Neural Networks in Scientific Modeling
    Viana, Felipe A. C.
    Subramaniyan, Arun K.
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2021, 28 (05) : 3801 - 3830
  • [26] Forecasting Buoy Observations Using Physics-Informed Neural Networks
    Schmidt, Austin B.
    Pokhrel, Pujan
    Abdelguerfi, Mahdi
    Ioup, Elias
    Dobson, David
    IEEE JOURNAL OF OCEANIC ENGINEERING, 2024, 49 (03) : 821 - 840
  • [27] Synthesis of voiced sounds using physics-informed neural networks
    Yokota, Kazuya
    Ogura, Masataka
    Abe, Masajiro
    Acoustical Science and Technology, 45 (06): : 333 - 336
  • [28] Physics-Informed Neural Networks for Modeling Cellulose Degradation in Power Transformers
    Bragone, Federica
    Oueslati, Khaoula
    Laneryd, Tor
    Luvisotto, Michele
    Morozovska, Kateryna
    2022 21ST IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, ICMLA, 2022, : 1365 - 1372
  • [29] Physics-informed neural networks for gravity field modeling of small bodies
    John Martin
    Hanspeter Schaub
    Celestial Mechanics and Dynamical Astronomy, 2022, 134
  • [30] Physics-informed neural networks for gravity field modeling of the Earth and Moon
    Martin, John
    Schaub, Hanspeter
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2022, 134 (02):