First-principles study of hydrogen trapping and diffusion mechanisms in vanadium carbide with connecting carbon vacancies

被引:1
|
作者
Li, Linxian [1 ]
Lan, Huifang [1 ]
Tang, Shuai [1 ]
Yan, Haile [2 ]
Tan, Fengliang [3 ]
van der Zwaag, Sybrand [4 ]
Peng, Qing [5 ,6 ,7 ]
Liu, Zhenyu [1 ]
Wang, Guodong [1 ]
机构
[1] Northeastern Univ, State Key Lab Rolling & Automat, Shenyang 110819, Peoples R China
[2] Northeastern Univ, Sch Mat Sci & Engn, Shenyang 110819, Peoples R China
[3] Hunan Univ Humanities Sci & Technol, Sch Mat & Environm Engn, Loudi 417000, Peoples R China
[4] Delft Univ Technol, Fac Aerosp Engn, Novel Aerosp Mat Grp, NL-2629 HS Delft, Netherlands
[5] Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100190, Peoples R China
[6] Guangdong Aerosp Res Acad, Guangzhou 511458, Peoples R China
[7] Xinyan Semi Technol Co Ltd, Wuhan 430075, Peoples R China
基金
中国国家自然科学基金;
关键词
DFT calculation; VC precipitates; Hydrogen trap; Hydrogen diffusion; INDUCED DUCTILITY LOSS; HIGH-STRENGTH; EMBRITTLEMENT; STEEL; BEHAVIOR; DESORPTION; POINTS; METALS; V4C3; VC;
D O I
10.1016/j.ijhydene.2024.10.150
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Understanding the trapping and diffusion mechanism of hydrogen in vanadium carbide (VC) precipitates is crucial for exploring the issue of hydrogen embrittlement in steel. Although there is widespread consensus that VC can trap hydrogen, the mechanism by which hydrogen diffuses into VC is still unclear. In this study, we used first-principles calculation methods to study the influence of different spacings of carbon vacancies on the trapping and diffusion of hydrogen in VC. The increase in the number of C vacancies makes it easier for vacancies to trap hydrogen, and hydrogen tend to fill up C vacancies. The diffusion of hydrogen into VC only occurs via neighboring C vacancies at a distance of 0.295 nm (connecting vacancies), leading to a diffusion barrier of 0.63-0.78 eV. This is consistent with experimental results and validates the experimental speculation that the diffusion of hydrogen in VC requires a connecting C vacancy grid.
引用
收藏
页码:611 / 617
页数:7
相关论文
共 50 条
  • [31] First-principles study of hydrogen diffusion in transition metal Rhodium
    Bao, Wulijibilige
    Cui, Xin
    Wang, Zhi-Ping
    3RD INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES (IC-MSQUARE 2014), 2015, 574
  • [32] A first-principles study on hydrogen in ZnS: Structure, stability and diffusion
    Sun, Yu
    Xie, Sheng-Yi
    Meng, Xing
    PHYSICS LETTERS A, 2015, 379 (05) : 487 - 490
  • [33] Hydrogen diffusion in δ- and ε-TiH2: First-principles study
    Xie, Xiaoqing
    Wen, Bin
    Fan, Changzeng
    VACUUM, 2025, 233
  • [34] First-principles study on dissolution and diffusion properties of hydrogen in molybdenum
    Duan, Chen
    Liu, Yue-Lin
    Zhou, Hong-Bo
    Zhang, Ying
    Jin, Shuo
    Lu, Guang-Hong
    Luo, G. -N.
    JOURNAL OF NUCLEAR MATERIALS, 2010, 404 (02) : 109 - 115
  • [35] First-Principles Study of hydrogen retention and diffusion in beryllium oxide
    Allouche, A.
    Ferro, Y.
    SOLID STATE IONICS, 2015, 272 : 91 - 100
  • [36] First-principles study of hydrogen vacancies in lithium amide doped with titanium and niobium
    Cheng, Liping
    Xu, Baoen
    Gong, Xuejing
    Li, Xiaoyan
    Zeng, Yanli
    Meng, Lingpeng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (26) : 11303 - 11312
  • [37] Effect of impurity carbon and oxygen atoms on the behavior of hydrogen in vanadium in a fusion environment: A first-principles study
    Hua, Juan
    Li, Ying
    Liu, Yue-Lin
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2018, 32 (21):
  • [38] Influence of carbon vacancies on the adsorption of Au on TiC(001): a first-principles study
    Haimin Ding
    Qing Liu
    Jinchuan Jie
    Wenli Kang
    Ying Yue
    Xinchun Zhang
    Journal of Materials Science, 2016, 51 : 2902 - 2910
  • [39] Influence of carbon vacancies on the adsorption of Au on TiC(001): a first-principles study
    Ding, Haimin
    Liu, Qing
    Jie, Jinchuan
    Kang, Wenli
    Yue, Ying
    Zhang, Xinchun
    JOURNAL OF MATERIALS SCIENCE, 2016, 51 (06) : 2902 - 2910
  • [40] First-principles theory of hydrogen diffusion in aluminum
    Gunaydin, Hakan
    Barabash, Sergey V.
    Houk, K. N.
    Ozolins, V.
    PHYSICAL REVIEW LETTERS, 2008, 101 (07)