Physics-informed deep learning for structural dynamics under moving load

被引:1
|
作者
Liang, Ruihua [1 ,2 ]
Liu, Weifeng [1 ]
Fu, Yuguang [2 ]
Ma, Meng [1 ]
机构
[1] Beijing Jiaotong Univ, Key Lab Urban Underground Engn, Minist Educ, Beijing 100044, Peoples R China
[2] Nanyang Technol Univ, Sch Civil & Environm Engn, Singapore City 639798, Singapore
基金
北京市自然科学基金; 中国国家自然科学基金; 新加坡国家研究基金会;
关键词
Structural dynamics; Deep learning; Parameter identification; Physics-informed neural network (PINN); Moving load; Frequency domain; NEURAL-NETWORKS; TUTORIAL;
D O I
10.1016/j.ijmecsci.2024.109766
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Physics-informed deep learning has emerged as a promising approach that incorporates physical constraints into the model, reduces the amount of data required, and demonstrates robustness and potential in dealing with limited datasets for a variety of studies. However, several key challenges still exist, with one being the spectral bias problem of deep learning in the simulation of functions with multi-frequency features. To overcome the challenge, this study proposes a novel physics-informed deep learning method, which integrates physics- informed neural network with Fourier transform so as to solve partial differential equations in the frequency domain, thus alleviating the problem of spectral bias of neural networks in the simulation of multi-frequency functions. In addition, the proposed method is used to focus on the forward simulation and parameter inverse identification issues in structural dynamics under moving loads. To illustrate the superiority of the method, the issues of dynamic response of simply supported beams under moving loads are presented as case studies, and the performance of the method in multiple cases is analysed and discussed. The research results demonstrate the feasibility and effectiveness of the method for structural dynamics simulation and parameter inverse identifications using limited datasets.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Unsupervised physics-informed deep learning for assessing pulmonary artery hemodynamics
    Liu, Xiujian
    Xie, Baihong
    Zhang, Dong
    Zhang, Heye
    Gao, Zhifan
    de Albuquerque, Victor Hugo C.
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 257
  • [42] Physics-informed deep learning model in wind turbine response prediction
    Li, Xuan
    Zhang, Wei
    RENEWABLE ENERGY, 2022, 185 : 932 - 944
  • [43] Phase Retrieval for Fourier THz Imaging with Physics-Informed Deep Learning
    Xiang, Mingjun
    Wang, Lingxiao
    Yuan, Hui
    Zhou, Kai
    Roskos, Hartmut G.
    2022 47TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER AND TERAHERTZ WAVES (IRMMW-THZ 2022), 2022,
  • [44] Physics-informed deep-learning applications to experimental fluid mechanics
    Eivazi, Hamidreza
    Wang, Yuning
    Vinuesa, Ricardo
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (07)
  • [45] A PHYSICS-INFORMED DEEP LEARNING APPROACH FOR HDGT COMPRESSOR PERFORMANCE SIMULATION
    Wei, Manman
    Jiang, Xiaomo
    Liu, Yiyang
    Ge, Xin
    PROCEEDINGS OF ASME TURBO EXPO 2024: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2024, VOL 12D, 2024,
  • [46] Physics-Informed deep learning to predict flow fields in cyclone separators
    Queiroz, L. H.
    Santos, F. P.
    Oliveira, J. P.
    Souza, M. B.
    DIGITAL CHEMICAL ENGINEERING, 2021, 1
  • [47] Multi-Objective Loss Balancing for Physics-Informed Deep Learning
    Bischof, Rafael
    Kraus, Michael A.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 439
  • [48] Phase-field modeling of fracture with physics-informed deep learning
    Manav, M.
    Molinaro, R.
    Mishra, S.
    De Lorenzis, L.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 429
  • [49] Physics-Informed Deep Learning for Computational Elastodynamics without Labeled Data
    Rao, Chengping
    Sun, Hao
    Liu, Yang
    JOURNAL OF ENGINEERING MECHANICS, 2021, 147 (08)
  • [50] Physics-informed deep learning for modelling particle aggregation and breakage processes
    Chen, Xizhong
    Wang, Li Ge
    Meng, Fanlin
    Luo, Zheng-Hong
    Chemical Engineering Journal, 2021, 426