Lifetime prediction of epoxy coating using convolutional neural networks and post processing image recognition methods

被引:0
|
作者
Meng, Fandi [1 ]
Chen, Yufan [1 ,2 ]
Chi, Jianning [3 ]
Wang, Huan [3 ]
Wang, Fuhui [1 ]
Liu, Li [1 ]
机构
[1] Northeastern Univ, Corros & Protect Ctr, Shenyang 110819, Peoples R China
[2] Luoyang Ship Mat Res Inst, Xiamen 361100, Peoples R China
[3] Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110169, Peoples R China
基金
中国国家自然科学基金;
关键词
PATTERN-RECOGNITION; FAILURE-MECHANISM; CORROSION; PERFORMANCE; BEHAVIOR; SURFACE; OPTIMIZATION; SYSTEM; ALLOYS;
D O I
10.1038/s41529-024-00532-z
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The rapid failure of organic coatings in deep-sea environments complicates accurate lifetime prediction. Given the rapid cracking characteristic on the coating surface in this environment, a comprehensive "performance-structure" failure model was established. Initially, a targeted image recognition approach containing convolutional neural network (CNN) and post-processing was constructed for the crack area detection. An overall precision of 82.81% demonstrated the network's good accuracy. The length distribution and the statistical evolution of cracks were extracted from SEM images to obtain the kinetic equation of the cracks related to coating structure degradation. In addition, the kinetics of water diffusion and coating adhesion were examined, as they represent critical parameters of coating performance. Based on this achievement, a failure model incorporating three dominant factors was integrated by the gray relational analysis method. The average prediction error of the model was 2.60%, which lays the groundwork for developing image-based methods to predict coating life.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Robustness of Deep Convolutional Neural Networks for Image Recognition
    Ulicny, Matej
    Lundstrom, Jens
    Byttner, Stefan
    INTELLIGENT COMPUTING SYSTEMS, 2016, 597 : 16 - 30
  • [22] Image Recognition with MapReduce Based Convolutional Neural Networks
    Leung, Jackie
    Chen, Min
    2019 IEEE 10TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2019, : 119 - 125
  • [23] Embedded facial image processing with Convolutional Neural Networks
    Mamalet, Franck
    Roux, Sebastien
    Garcia, Christophe
    2010 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, 2010, : 261 - 264
  • [24] QUATERNION CONVOLUTIONAL NEURAL NETWORKS FOR HETEROGENEOUS IMAGE PROCESSING
    Parcollet, Titouan
    Morchid, Mohamed
    Linares, Georges
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 8514 - 8518
  • [25] Consideration of Convolutional Neural Networks for Image Processing of Capillaries
    Hang Nguyen Thi Phuong
    Jeong, Hieyong
    Shin, Choonsung
    3RD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN INFORMATION AND COMMUNICATION (IEEE ICAIIC 2021), 2021, : 429 - 434
  • [26] Image recognition using convolutional neural networks for classification of honey bee subspecies
    Dario De Nart
    Cecilia Costa
    Gennaro Di Prisco
    Emanuele Carpana
    Apidologie, 2022, 53
  • [27] An Image Representation of Skeletal Data for Action Recognition using Convolutional Neural Networks
    Vernikos, Ioannis
    Mathe, Eirini
    Papadakis, Antonios
    Spyrou, Evaggelos
    Mylonas, Phivos
    12TH ACM INTERNATIONAL CONFERENCE ON PERVASIVE TECHNOLOGIES RELATED TO ASSISTIVE ENVIRONMENTS (PETRA 2019), 2019, : 325 - 326
  • [28] Image Classification Using Biomimetic Pattern Recognition with Convolutional Neural Networks Features
    Zhou, Liangji
    Li, Qingwu
    Huo, Guanying
    Zhou, Yan
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2017, 2017
  • [29] Image recognition using convolutional neural networks for classification of honey bee subspecies
    de Nart, Dario
    Costa, Cecilia
    di Prisco, Gennaro
    Carpana, Emanuele
    APIDOLOGIE, 2022, 53 (01)
  • [30] Performance prediction of automatic speech recognition systems using convolutional neural networks
    Elloumi, Zied
    Lecouteux, Benjamin
    Galibert, Olivier
    Besacier, Laurent
    TRAITEMENT AUTOMATIQUE DES LANGUES, 2018, 59 (02): : 49 - 76