Lifetime prediction of epoxy coating using convolutional neural networks and post processing image recognition methods

被引:0
|
作者
Meng, Fandi [1 ]
Chen, Yufan [1 ,2 ]
Chi, Jianning [3 ]
Wang, Huan [3 ]
Wang, Fuhui [1 ]
Liu, Li [1 ]
机构
[1] Northeastern Univ, Corros & Protect Ctr, Shenyang 110819, Peoples R China
[2] Luoyang Ship Mat Res Inst, Xiamen 361100, Peoples R China
[3] Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110169, Peoples R China
基金
中国国家自然科学基金;
关键词
PATTERN-RECOGNITION; FAILURE-MECHANISM; CORROSION; PERFORMANCE; BEHAVIOR; SURFACE; OPTIMIZATION; SYSTEM; ALLOYS;
D O I
10.1038/s41529-024-00532-z
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The rapid failure of organic coatings in deep-sea environments complicates accurate lifetime prediction. Given the rapid cracking characteristic on the coating surface in this environment, a comprehensive "performance-structure" failure model was established. Initially, a targeted image recognition approach containing convolutional neural network (CNN) and post-processing was constructed for the crack area detection. An overall precision of 82.81% demonstrated the network's good accuracy. The length distribution and the statistical evolution of cracks were extracted from SEM images to obtain the kinetic equation of the cracks related to coating structure degradation. In addition, the kinetics of water diffusion and coating adhesion were examined, as they represent critical parameters of coating performance. Based on this achievement, a failure model incorporating three dominant factors was integrated by the gray relational analysis method. The average prediction error of the model was 2.60%, which lays the groundwork for developing image-based methods to predict coating life.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Image recognition in UAV videos using convolutional neural networks
    Quinonez, Yadira
    Lizarraga, Carmen
    Peraza, Juan
    Zatarain, Oscar
    IET SOFTWARE, 2020, 14 (02) : 176 - 181
  • [2] Food Image Recognition with Convolutional Neural Networks
    Zhang, Weishan
    Zhao, Dehai
    Gong, Wenjuan
    Li, Zhongwei
    Lu, Qinghua
    Yang, Su
    IEEE 12TH INT CONF UBIQUITOUS INTELLIGENCE & COMP/IEEE 12TH INT CONF ADV & TRUSTED COMP/IEEE 15TH INT CONF SCALABLE COMP & COMMUN/IEEE INT CONF CLOUD & BIG DATA COMP/IEEE INT CONF INTERNET PEOPLE AND ASSOCIATED SYMPOSIA/WORKSHOPS, 2015, : 690 - 693
  • [3] An Analysis of Convolutional Neural Networks for Image Recognition
    He, Jun
    Liu, Yue
    Li, Shuai
    Shen, Jin-ming
    2017 2ND INTERNATIONAL CONFERENCE ON COMPUTATIONAL MODELING, SIMULATION AND APPLIED MATHEMATICS (CMSAM), 2017, : 524 - 528
  • [4] Robust Convolutional Neural Networks for Image Recognition
    Albeahdili, Hayder M.
    Alwzwazy, Haider A.
    Islam, Naz E.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2015, 6 (11) : 105 - 111
  • [5] Image Sensing and Processing with Convolutional Neural Networks
    Coleman, Sonya
    Kerr, Dermot
    Zhang, Yunzhou
    SENSORS, 2022, 22 (10)
  • [6] Facial image processing with convolutional neural networks
    Garcia, Christophe
    Duffner, Stefan
    PROGRESS IN PATTERN RECOGNITION, 2007, : 97 - +
  • [7] Using convolutional neural networks for tick image recognition – a preliminary exploration
    Oghenekaro Omodior
    Mohammad R. Saeedpour-Parizi
    Md. Khaledur Rahman
    Ariful Azad
    Keith Clay
    Experimental and Applied Acarology, 2021, 84 : 607 - 622
  • [8] Recognition of Image One Feature Point Using Convolutional Neural Networks
    Hori, Miki
    Jincho, Makoto
    Hori, Tadasuke
    Sekime, Hironao
    Kato, Akiko
    Ueno, Atsuko
    Kawai, Tatsushi
    JOURNAL OF HARD TISSUE BIOLOGY, 2021, 30 (02) : 161 - 164
  • [9] Acoustic event recognition using cochleagram image and convolutional neural networks
    Sharan, Roneel V.
    Moir, Tom J.
    APPLIED ACOUSTICS, 2019, 148 : 62 - 66
  • [10] Using convolutional neural networks for tick image recognition - a preliminary exploration
    Omodior, Oghenekaro
    Saeedpour-Parizi, Mohammad R.
    Rahman, Md Khaledur
    Azad, Ariful
    Clay, Keith
    EXPERIMENTAL AND APPLIED ACAROLOGY, 2021, 84 (03) : 607 - 622