Low-light image enhancement based on variational image decomposition

被引:0
|
作者
Su, Yonggang [1 ,2 ]
Yang, Xuejie [1 ]
机构
[1] Hebei Univ, Coll Elect & Informat Engn, Baoding 071000, Peoples R China
[2] Machine Vis Technol Innovat Ctr Hebei Prov, Baoding 071000, Peoples R China
关键词
Low-light image enhancement; Variational image decomposition; TV-G-L-2; model; Histogram equalization; HISTOGRAM EQUALIZATION; FRINGE PATTERN; NOISE REMOVAL; RETINEX; ILLUMINATION; NETWORK;
D O I
10.1007/s00530-024-01581-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Due to the significant differences in brightness regions in real-world images, existing low-light image enhancement methods may lead to insufficient enhancement in low-light regions or over-enhancement in normal-light regions, as well as color distortions and artifacts. To overcome this drawback, we propose a real-world low-light image enhancement method based on a variational image decomposition model. In our proposed method, we first grayscale and histogram equalize the low-light image. Then, we use the variational image decomposition model to decompose the histogram-equalized grayscale image into cartoon, texture, and high-frequency detail components. Next, we use a Gaussian low-pass filter (GLPF) to remove the noise in the cartoon component, and use a nonlinear stretch function and a gamma function to enhance and compress the texture component and the high-frequency detail component, respectively. We then merge the processed components to obtain a reconstructed grayscale image. Finally, we convert the low-light image from the RGB color space to the HSV color space and recombine the reconstructed grayscale image with the H and S components to obtain the enhanced image after color space conversion. To validate the effectiveness of our proposed method, we carried out both qualitative and quantitative experiments on 5 datasets, and compared it with 14 other low-light image enhancement methods. The results show that our proposed method outperforms most of the low-light image enhancement methods in both qualitative and quantitative performance.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Low-light image enhancement network with decomposition and adaptive information fusion
    Zhu, Hegui
    Wang, Kai
    Zhang, Ziwei
    Liu, Yuelin
    Jiang, Wuming
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (10): : 7733 - 7748
  • [42] Low-light image enhancement network with decomposition and adaptive information fusion
    Zhu, Hegui
    Wang, Kai
    Zhang, Ziwei
    Liu, Yuelin
    Jiang, Wuming
    Neural Computing and Applications, 2022, 34 (10) : 7733 - 7748
  • [43] Low-light image enhancement network with decomposition and adaptive information fusion
    Hegui Zhu
    Kai Wang
    Ziwei Zhang
    Yuelin Liu
    Wuming Jiang
    Neural Computing and Applications, 2022, 34 : 7733 - 7748
  • [44] Low-light image enhancement based on sharpening-smoothing image filter
    Demir, Y.
    Kaplan, N. H.
    DIGITAL SIGNAL PROCESSING, 2023, 138
  • [45] Low-light image enhancement for infrared and visible image fusion
    Zhou, Yiqiao
    Xie, Lisiqi
    He, Kangjian
    Xu, Dan
    Tao, Dapeng
    Lin, Xu
    IET IMAGE PROCESSING, 2023, 17 (11) : 3216 - 3234
  • [46] Underwater image enhancement based on variational image decomposition
    Zheng, Huamiao
    Wu, Yuewei
    Su, Yonggang
    JOURNAL OF OPTICS-INDIA, 2025,
  • [47] Low-Light Image Enhancement Based on Constrained Norm Estimation
    Zhao, Tan
    Ding, Hui
    Shang, Yuanyuan
    Zhou, Xiuzhuang
    COMPUTER VISION, PT I, 2017, 771 : 368 - 379
  • [48] Wavelet-based enhancement network for low-light image
    Hu, Xiaopeng
    Liu, Kang
    Yin, Xiangchen
    Gao, Xin
    Jiang, Pingsheng
    Qian, Xu
    DISPLAYS, 2025, 87
  • [49] Benchmarking Low-Light Image Enhancement and Beyond
    Liu, Jiaying
    Xu, Dejia
    Yang, Wenhan
    Fan, Minhao
    Huang, Haofeng
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2021, 129 (04) : 1153 - 1184
  • [50] Low-Light Image Enhancement Network Based on Recursive Network
    Liu, Fangjin
    Hua, Zhen
    Li, Jinjiang
    Fan, Linwei
    FRONTIERS IN NEUROROBOTICS, 2022, 16