Multi-step forward intelligent prediction of tool wear condition

被引:0
|
作者
Zhu, Kunpeng [1 ,2 ]
Huang, Chengyi [1 ]
Li, Jun [1 ,2 ]
机构
[1] Advanced Manufacturing Technology Research Center institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Changzhou,213164, China
[2] School of Machinery and Automation, Wuhan University of Science and Technology, Wuhan,430081, China
基金
中国国家自然科学基金;
关键词
Gaussian distribution - Wear of materials;
D O I
10.13196/j.cims.2023.0575
中图分类号
学科分类号
摘要
Accurate monitoring of tool condition is crucial for improving machining quality and efficiency.In the current widely used indirect methods for tool wear monitoring,the single-step or short-term predictions are predominant,without achieving multi-step prediction and suffering from significant cumulative errors.Gaussian process is a machine learning method commonly applied in indirect methods.However,traditional Gaussian process regression has limited accuracy in tool wear prediction due to model structure and algorithm constraints.To address these shortcomings,an improved autoregressive recursive Gaussian process model was proposed for multi-step prediction of tool wear.To reduce cumulative prediction errors,the improved model updating methods and the composite kernel functions were applied to set forgetting factor for samples during model training.Additionally,a bias correction method was incorporated in the prediction process.The effects of each improvement factor on the model were studied,and the accurate multi-step prediction of tool wear state was achieved by combining all favorable factors.The prediction errors reduced by 85.68%,20.67% and 63.32% on three test sets respectively. © 2024 CIMS. All rights reserved.
引用
收藏
页码:3038 / 3049
相关论文
共 50 条
  • [21] A nonparametric multi-step prediction estimator in Markovian structures
    Chen, R
    STATISTICA SINICA, 1996, 6 (03) : 603 - 615
  • [22] Trend modeling and multi-step taxi demand prediction
    Jiang, Shan
    Feng, Yuming
    Liao, Xiaofeng
    Onasanya, B. O.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, (51): : 275 - 294
  • [23] Temporal Convolutions for Multi-Step Quadrotor Motion Prediction
    Looper, Samuel
    Waslander, Steven L.
    2022 19TH CONFERENCE ON ROBOTS AND VISION (CRV 2022), 2022, : 32 - 39
  • [24] Reciprocal Consistency Prediction Network for Multi-Step Human Trajectory Prediction
    Zhu, Wenjun
    Liu, Yanghong
    Zhang, Mengyi
    Yi, Yang
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (06) : 6042 - 6052
  • [25] Joint multi-channel multi-step spectrum prediction algorithm
    Gao, Yulong
    Zhao, Chunyan
    Fu, Ning
    2021 IEEE 94TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2021-FALL), 2021,
  • [26] Multi-step forward machine matching model based on nonlinear system
    Yu, Haiyan
    Su, Tao
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2019, 125 : 150 - 150
  • [27] Optimizing tool wear prediction in intelligent manufacturing: a multi-sensor approach enhanced by RealNVP
    Lei, Huanyi
    Li, Bo
    Liu, Hengchang
    Xia, Keyao
    Zhao, Wenhe
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (12)
  • [28] Daily Prediction and Multi-Step Forward Forecasting of Reference Evapotranspiration Using LSTM and Bi-LSTM Models
    Roy, Dilip Kumar
    Sarkar, Tapash Kumar
    Kamar, Sheikh Shamshul Alam
    Goswami, Torsha
    Muktadir, Md Abdul
    Al-Ghobari, Hussein M.
    Alataway, Abed
    Dewidar, Ahmed Z.
    El-Shafei, Ahmed A.
    Mattar, Mohamed A.
    AGRONOMY-BASEL, 2022, 12 (03):
  • [29] Adaptive multi-step ahead forecasting of machine tool chatter
    Zhou, Xiaoqin
    Yu, Junyi
    Wang, Wencai
    Kong, Fansen
    Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, 34 (05): : 55 - 59
  • [30] Multi-step intelligent prediction of shield machine position attitude on the basis of BWO-CNN-LSTM-GRU
    Liu, Xuanyu
    Zhang, Wenshuai
    Jiang, Mengting
    Wang, Yudong
    Ma, Lili
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (10)