Competitive Li-ion coordination for constructing a three-dimensional transport network to achieve ultra-high ionic conductivity of a composite solid-state electrolyte

被引:12
|
作者
Ma, Yiteng [1 ,2 ]
Qiu, Yong [3 ]
Yang, Ke [1 ,2 ]
Lv, Shun [1 ,2 ]
Li, Yuhang [1 ,2 ]
An, Xufei [1 ,2 ]
Xiao, Guanyou [1 ,2 ]
Han, Zhuo [1 ,2 ]
Ma, Yuetao [1 ,2 ]
Chen, Likun [1 ,2 ]
Zhang, Danfeng [1 ,2 ]
Lv, Wei [1 ]
Tian, Yun [3 ]
Hou, Tingzheng [1 ]
Liu, Ming [1 ]
Zhou, Zhen [3 ]
Kang, Feiyu [1 ,2 ]
He, Yan-Bing [1 ]
机构
[1] Inst Mat Res IMR, Shenzhen All Solid State Lithium Battery Electroly, Tsinghua Shenzhen Int, Grad Sch, Shenzhen 518055, Peoples R China
[2] Tsinghua Univ, Sch Mat Sci & Engn, Beijing 100084, Peoples R China
[3] Zhengzhou Univ, Interdisciplinary Res Ctr Sustainable Energy Sci &, Sch Chem Engn, Zhengzhou 450001, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
ENERGY-STORAGE; BATTERY; POLYACRYLONITRILE;
D O I
10.1039/d4ee03134b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The porous structure of poly(vinylidene fluoride) (PVDF)-based polymer electrolytes and their disordered ion transport properties restrict the continuous and highly efficient transport of lithium ions (Li+), which is a major challenge in further improving ionic conductivity. Herein, we constructed a compact composite solid-state electrolyte with a three-dimensional continuous Li+ transport network by coupling a heat-treated polyacrylonitrile fiber network with an interconnected metal organic framework coating layer (h-PAN@MOF). The MOF crystal surface exhibits strong interactions with C 00000000 00000000 00000000 00000000 11111111 00000000 11111111 00000000 00000000 00000000 O of N,N-dimethylformamide (DMF), effectively weakening the Li+-O binding strength of DMF in the Li+ solvation structure. Highly-efficient Li+ transport channels and networks were constructed to achieve a high ionic conductivity of 1.03 x 10-3 S cm-1. The MOF-dependent Li+ coordination environment prompts the formation of a stable interphase. The h-PAN@MOF network also contributes to the high tensile strength (20.84 MPa) of the compact electrolyte. The Li||LiNi0.8Mn0.1Co0.1O2 full cells with the h-PAN@MOF network realize robust cycling for 1000 cycles at 5C. This work provides a facile strategy for regulating the Li+ coordination state and its spatial distribution in solid-state electrolytes for fast-charging solid-state Li metal batteries. The competitive Li+ coordination environment with a three-dimensional transport network is designed in a composite solid-state electrolyte to realize a high ionic conductivity of 1.03 x 10-3 S cm-1 and ultralong-cycling solid-state batteries at 5C.
引用
收藏
页码:8274 / 8283
页数:10
相关论文
共 50 条
  • [41] Li-ion transport in solid-state electrolyte of Li1-xAl1-xSi2+xO6:an ab initio study
    Wen-Jun Li
    Modeste-Venin-Mendieev Nitou
    Jia-Yi Zheng
    Zhi-Yuan Zhang
    Long-Fei Liu
    Jin-Lan Nie
    Ying-Hua Niu
    Liang An
    Wei-Qiang Lv
    RareMetals, 2023, 42 (07) : 2261 - 2271
  • [42] Li-ion transport in solid-state electrolyte of Li1-xAl1-xSi2+xO6: an ab initio study
    Li, Wen-Jun
    Nitou, Modeste-Venin-Mendieev
    Zheng, Jia-Yi
    Zhang, Zhi-Yuan
    Liu, Long-Fei
    Nie, Jin-Lan
    Niu, Ying-Hua
    An, Liang
    Lv, Wei-Qiang
    RARE METALS, 2023, 42 (07) : 2261 - 2271
  • [43] Impact of thermal treatment on the Li-ion transport, interfacial properties, and composite preparation of LLZO garnets for solid-state electrolytes
    Ghorbanzade, Pedram
    Pesce, Arianna
    Gomez, Kerman
    Accardo, Grazia
    Devaraj, Shanmukaraj
    Lopez-Aranguren, Pedro
    del Amo, Juan Miguel Lopez
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (22) : 11675 - 11683
  • [44] A highly ion-conductive three-dimensional LLZAO-PEO/LiTFSI solid electrolyte for high-performance solid-state batteries
    Cai, Dan
    Wang, Donghuang
    Chen, Yongjie
    Zhang, Shengzhao
    Wang, Xiuli
    Xia, Xinhui
    Tu, Jiangping
    Chemical Engineering Journal, 2021, 394
  • [45] High Energy Density Hybrid Solid-State Li-Ion Batteries Enabled by a Gel/Ceramic/Gel Sandwich Electrolyte
    Chen, Zihao
    Han, Baichuan
    Shi, Yuansheng
    Wang, Senhao
    Zhang, Zhizhen
    Lu, Xia
    Cao, Dapeng
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (06) : 5113 - 5119
  • [46] High-throughput searches for novel two-dimensional materials and solid-state Li-ion conductors
    Marzari, Nicola
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [47] A branched cellulose-reinforced composite polymer electrolyte with upgraded ionic conductivity for anode stabilized solid-state Li metal batteries
    Wu, Hailong
    Wang, Jiali
    Zhao, Yu
    Zhang, Xiaoqiang
    Xu, Ling
    Liu, Hao
    Cui, Yixiu
    Cui, Yanhua
    Li, Chilin
    SUSTAINABLE ENERGY & FUELS, 2019, 3 (10) : 2642 - 2656
  • [48] Investigation of the structure and ionic conductivity of a Li3InCl6 modified by dry room annealing for solid-state Li-ion battery applications
    Molaiyan, Palanivel
    Mailhiot, Sarah E.
    Voges, Kevin
    Kantola, Anu M.
    Hu, Tao
    Michalowski, Peter
    Kwade, Arno
    Telkki, Ville-Veikko
    Lassi, Ulla
    MATERIALS & DESIGN, 2023, 227
  • [49] Porous Li-MOF as a solid-state electrolyte: exploration of lithium ion conductivity through bio-inspired ionic channels
    Nath, Karabi
    Bin Rahaman, Abdulla
    Moi, Rajib
    Maity, Kartik
    Biradha, Kumar
    CHEMICAL COMMUNICATIONS, 2020, 56 (94) : 14873 - 14876
  • [50] A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries
    Shi, Peiran
    Ma, Jiabin
    Liu, Ming
    Guo, Shaoke
    Huang, Yanfei
    Wang, Shuwei
    Zhang, Lihan
    Chen, Likun
    Yang, Ke
    Liu, Xiaotong
    Li, Yuhang
    An, Xufei
    Zhang, Danfeng
    Cheng, Xing
    Li, Qidong
    Lv, Wei
    Zhong, Guiming
    He, Yan-Bing
    Kang, Feiyu
    NATURE NANOTECHNOLOGY, 2023, 18 (06) : 602 - +