Study of photocatalytic activity of Al+ and In+ implanted rutile TiO2 crystals: methyl orange and methylene blue degradation

被引:0
|
作者
Hernandez, A. G. [1 ]
Perez-Gonzalez, M. [2 ]
Tomas, S. A. [3 ]
Asomoza, R. [1 ]
Karthik, T. V. K. [4 ]
Kudriavtsev, Yu. [1 ]
机构
[1] CINVESTAV IPN, Solid State Elect Sect, Ave IPN N 2508,Col San Pedro Zacatenco, Mexico City 07360, Mexico
[2] Univ Autonoma Estado Hidalgo, Area Academ Matemat & Fis, Inst Ciencias Bas Ingn, Carretera Pachuca Tulancingo Km 4 5,Col Carboneras, Hidalgo 42184, Mexico
[3] CINVESTAV IPN, Phys Dept, Dept Biotechnol & Bioengn, Ave IPN 2508,Col San Pedro Zacatenco, Mexico City 07360, Mexico
[4] Tecnol Monterrey, Sch Engn & Sci, Av Lago Guadalupe KM 3-5, Mexico City 52926, Lopez Mateos, Mexico
关键词
DOPED TIO2; THIN-FILMS; WATER;
D O I
10.1007/s10854-024-13610-4
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Rutile titanium dioxide crystals were implanted with Al+ and In+ ions with energy of 25 and 50 keV, respectively. The ion dose was 3 x 10(16) ions/cm(2) for both samples. Subsequently, samples were annealed at 500 degrees C resulting in doping of the material by substitution of titanium ions. Besides, ion implantation induced formation of localized defects in the TiO2 crystals, which resulted in formation of additional energy levels within the forbidden band gap. The surface chemical, structural, and optical properties of the samples were characterized by Secondary Ion Mass Spectroscopy, X-ray Photoelectron Spectroscopy, Raman spectroscopy, and X-ray Diffraction. The redistribution of implanted ions was confirmed by SIMS, whereas XPS, XRD, and Raman spectroscopy suggested the incorporation of implanted atoms as dopants in TiO2 and proved the decrease of the band-gap energy in the rutile TiO2 crystal. The photocatalytic activity of samples was tested for degradation of methyl orange (MO) and methylene blue (MB). The obtained results showed that In+ implanted TiO2 has a higher photocatalytic activity. This sample achieved decomposition of 60% of MO and 30% of MB after 360 min. The latter result could be a consequence of the lower band-gap energy of the materials due to a shift of the valence band maximum as measured by X-ray Photoelectron Spectroscopy.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Kinetics of Photocatalytic Degradation of Methylene Blue in a TiO2 Slurry Reactor
    Sheetal, Ovhal D.
    Pragati, Thakur
    RESEARCH JOURNAL OF CHEMISTRY AND ENVIRONMENT, 2010, 14 (04): : 9 - 13
  • [42] Photocatalytic Degradation of Methylene Blue Using TiO2/Graphene Photocatalyst
    Jabarullah, Noor H.
    Zainuddin, Najwa
    Othman, Rapidah
    Shaarani, Farra Wahida
    Liszewski, Wieslaw
    ACTA MONTANISTICA SLOVACA, 2023, 28 (03) : 765 - 778
  • [43] Morphological effect of TiO2 catalysts on photocatalytic degradation of methylene blue
    Thuy-Duong Nguyen-Phan
    Shin, Eun Woo
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2011, 17 (03) : 397 - 400
  • [44] Sonocatalytic degradation of methyl orange in the presence of TiO2 catalysts and catalytic activity comparison of rutile and anatase
    Wang, J
    Guo, BD
    Zhang, XD
    Zhang, ZH
    Han, JT
    Wu, J
    ULTRASONICS SONOCHEMISTRY, 2005, 12 (05) : 331 - 337
  • [45] Application and mechanism study of TiO2/MXene nanocomposites in photocatalytic degradation of methyl orange
    Han, Runlin
    Xie, Yongli
    DESALINATION AND WATER TREATMENT, 2022, 256 : 282 - 288
  • [46] Photocatalytic Degradation of Methyl Orange on Y Zeolite Supported TiO2
    Wang, Hong
    Yang, Bo
    Zhang, Wenjie
    MATERIALS AND MANUFACTURING TECHNOLOGY, PTS 1 AND 2, 2010, 129-131 : 733 - 737
  • [47] Enhanced photocatalytic degradation of methyl orange by Au/TiO2 nanotubes
    Gao, Yuan
    Fan, Xiao-bin
    Zhang, Wen-feng
    Zhao, Qing-shan
    Zhang, Guo-liang
    Zhang, Feng-bao
    Li, Yang
    MATERIALS LETTERS, 2014, 130 : 1 - 4
  • [48] Photocatalytic Degradation of Methyl Orange on the Composite of TiO2 and Lanthanum Niobate
    Zhang, Wenjie
    Sun, Xin
    Ge, Nan
    ADVANCED MATERIALS RESEARCH, 2011, 213 : 63 - 67
  • [49] Photocatalytic degradation of methyl orange using ZnO/TiO2 composites
    Ge, Ming
    Guo, Changsheng
    Zhu, Xingwang
    Ma, Lili
    Han, Zhenan
    Hu, Wei
    Wang, Yuqiu
    FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING IN CHINA, 2009, 3 (03): : 271 - 280
  • [50] Photocatalytic degradation of methyl orange using ZnO/TiO2 composites
    Ming Ge
    Changsheng Guo
    Xingwang Zhu
    Lili Ma
    Zhenan Han
    Wei Hu
    Yuqiu Wang
    Frontiers of Environmental Science & Engineering in China, 2009, 3 : 271 - 280