Spectral difference method with a posteriori limiting: II - Application to low Mach number flows

被引:0
|
作者
Velasco-Romero, David A. [1 ,2 ]
Teyssier, Romain [2 ]
机构
[1] Univ Zurich, Inst Computat Sci, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[2] Princeton Univ, Dept Astrophys Sci, 4 Ivy Lane, Princeton, NJ 08544 USA
关键词
convection; hydrodynamics; methods: numerical; DISCONTINUOUS GALERKIN SCHEME; ADAPTIVE MESH REFINEMENT; FINITE-ELEMENT-METHOD; HYDRODYNAMICS CODE; CONSTRAINED-TRANSPORT; RIEMANN SOLVER; SIMULATIONS; MAGNETOHYDRODYNAMICS; PERFORMANCE; CONVECTION;
D O I
10.1093/mnras/staf133
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Stellar convection poses two main gargantuan challenges for astrophysical fluid solvers: low-Mach number flows and minuscule perturbations over steeply stratified hydrostatic equilibria. Most methods exhibit excessive numerical diffusion and are unable to capture the correct solution due to large truncation errors. In this paper, we analyse the performance of the spectral difference (SD) method under these extreme conditions using an arbitrarily high-order shock capturing scheme with a posteriori limiting. We include both a modification to the HLLC Riemann solver adapted to low Mach number flows (L-HLLC) and a well-balanced scheme to properly evolve perturbations over steep equilibrium solutions. We evaluate the performance of our method using a series of test tailored specifically for stellar convection. We observe that our high-order SD method is capable of dealing with very subsonic flows without necessarily using the modified Riemann solver. We find however that the well-balanced framework is unavoidable if one wants to capture accurately small amplitude convective and acoustic modes. Analysing the temporal and spatial evolution of the turbulent kinetic energy, we show that our fourth-order SD scheme seems to emerge as an optimal variant to solve this difficult numerical problem.
引用
收藏
页码:2387 / 2402
页数:16
相关论文
共 50 条
  • [41] Turbulent transport modeling in low Mach number flows
    Shimomura, Y
    PHYSICS OF FLUIDS, 1999, 11 (10) : 3136 - 3149
  • [42] A Relaxation Scheme for the Simulation of Low Mach Number Flows
    Abbate, Emanuela
    Iollo, Angelo
    Puppo, Gabriella
    FINITE VOLUMES FOR COMPLEX APPLICATIONS VIII-HYPERBOLIC, ELLIPTIC AND PARABOLIC PROBLEMS, 2017, 200 : 227 - 235
  • [43] New approaches for computation of low Mach number flows
    Shima, Eiji
    Kitamura, Keiichi
    COMPUTERS & FLUIDS, 2013, 85 : 143 - 152
  • [44] Numerical simulation of low Mach number reacting flows
    Bell, J. B.
    Aspden, A. J.
    Day, M. S.
    Lijewski, M. J.
    SCIDAC 2007: SCIENTIFIC DISCOVERY THROUGH ADVANCED COMPUTING, 2007, 78
  • [45] Numerical simulation of low Mach number reacting flows
    Woosely, S. E.
    Aspden, A. J.
    Bell, J. B.
    Kerstein, A. R.
    Sankaran, V.
    SCIDAC 2008: SCIENTIFIC DISCOVERY THROUGH ADVANCED COMPUTING, 2008, 125
  • [46] A Low Mach Number Model for Moist Atmospheric Flows
    Duarte, Max
    Almgren, Ann S.
    Bell, John B.
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 2015, 72 (04) : 1605 - 1620
  • [47] Lattice BGK models for low Mach number flows
    Filippova, O
    Hänel, D
    COMPUTATIONAL FLUID DYNAMICS '98, VOL 1, PARTS 1 AND 2, 1998, : 1186 - 1191
  • [48] Low Mach number limit for viscous compressible flows
    Danchin, R
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 39 (03): : 459 - 475
  • [49] A projection hybrid finite volume/element method for low-Mach number flows
    Bermudez, A.
    Ferrin, J. L.
    Saavedra, L.
    Vazquez-Cendona, M. E.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 271 : 360 - 378
  • [50] BEHAVIOR OF THE DISCONTINUOUS GALERKIN METHOD FOR COMPRESSIBLE FLOWS AT LOW MACH NUMBER ON TRIANGLES AND TETRAHEDRONS
    Jung, Jonathan
    Perrier, Vincent
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2024, 46 (01): : A452 - A482