DEGNN: A Deep Learning-Based Method for Unmanned Aerial Vehicle Software Security Analysis

被引:0
|
作者
Du, Jiang [1 ]
Wei, Qiang [1 ]
Wang, Yisen [1 ]
Bai, Xingyu [1 ]
机构
[1] Informat Engn Univ, Sch Cyber Sci & Engn, Zhengzhou 450001, Peoples R China
关键词
unmanned aerial vehicle; cyber security; binary code similarity analysis; graph neural networks; NETWORKS; SIMILARITY;
D O I
10.3390/drones9020110
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
With the increasing utilization of drones, the cyber security threats they face have become more prominent. Code reuse in the software development of drone systems has led to vulnerabilities in drones. The binary code similarity analysis method offers a way to analyze drone firmware lacking source code. This paper proposes DEGNN, a novel graph neural network for binary code similarity analysis. It uses call-enhanced control graphs and attention mechanisms to generate dual embeddings of functions and predict similarity based on graph structures and node features. DEGNN is effective in cross-architecture tasks. Experimental results show that in the cross-architecture binary function search, DEGNN's mean reciprocal rank and recall@1 surpass the state of the art by 12% and 28.6%, respectively. In the cross-architecture real-world vulnerability search, specifically targeting drone systems, it has a 33.3% performance improvement over the SOTA model, indicating its great potential in enhancing drone cyber security.
引用
收藏
页数:21
相关论文
共 50 条
  • [11] Deep learning-based object detection in maritime unmanned aerial vehicle imagery: Review and experimental comparisons
    Zhao, Chenjie
    Liu, Ryan Wen
    Qu, Jingxiang
    Gao, Ruobin
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 128
  • [12] Deep Learning-Based Spatiotemporal Fusion of Unmanned Aerial Vehicle and Satellite Reflectance Images for Crop Monitoring
    Xiao, Juan
    Aggarwal, Ashwani Kumar
    Rage, Uday Kiran
    Katiyar, Vaibhav
    Avtar, Ram
    IEEE ACCESS, 2023, 11 : 85600 - 85614
  • [14] Deep learning-based object detection in maritime unmanned aerial vehicle imagery: Review and experimental comparisons
    Zhao, Chenjie
    Liu, Ryan Wen
    Qu, Jingxiang
    Gao, Ruobin
    Engineering Applications of Artificial Intelligence, 2024, 128
  • [15] Flood Detection Based on Unmanned Aerial Vehicle System and Deep Learning
    Yang, Kaixin
    Zhang, Sujie
    Yang, Xinran
    Wu, Nan
    COMPLEXITY, 2022, 2022
  • [16] Application of Deep Learning Based Object Detection on Unmanned Aerial Vehicle
    Ipek, Burak
    Akpinar, Mustafa
    2020 5TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2020, : 74 - 78
  • [17] Unmanned Aerial Vehicle Classification and Detection Based on Deep Transfer Learning
    Meng, Wei
    Tia, Meng
    2020 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND HUMAN-COMPUTER INTERACTION (ICHCI 2020), 2020, : 280 - 285
  • [18] Visual detection of green mangoes by an unmanned aerial vehicle in orchards based on a deep learning method
    Xiong, Juntao
    Liu, Zhen
    Chen, Shumian
    Liu, Bolin
    Zheng, Zhenhui
    Zhong, Zhuo
    Yang, Zhengang
    Peng, Hongxing
    BIOSYSTEMS ENGINEERING, 2020, 194 : 261 - 272
  • [19] Reinforcement Learning-Based Optimal Flat Spin Recovery for Unmanned Aerial Vehicle
    Kim, Donghae
    Oh, Gyeongtaek
    Seo, Yongjun
    Kim, Youdan
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2017, 40 (04) : 1074 - 1081
  • [20] Deep Learning Method for Wetland Segmentation in Unmanned Aerial Vehicle Multispectral Imagery
    Nuradili, Pakezhamu
    Zhou, Ji
    Zhou, Guiyun
    Melgani, Farid
    REMOTE SENSING, 2024, 16 (24)